动手学深度学习——softmax回归的从零开始实现

  1. 导入包,引入引入Fashion-MNIST数据集d2l.load_data_fashion_mnist()
  2. 初始化化模型参数Wb
  3. 定义softmax操作softmax()
  4. 定义模型net:softmax(W*X + b)
  5. 实现交叉熵损失函数cross_entropy():-∑ylog(y’)
  6. 定义计算预测正确的数量accuracy()
  7. 定义计算在指定数据集上模型的精度evaluate_accuracy()
  8. 定义一个实用类Accumulator(),对n个变量进行累加
  9. 训练模型一个迭代周期train_epoch_ch3()
  10. 定义在动画中绘制数据的程序类Animator ()
  11. 训练模型train_ch3()
  12. 定义优化器updater()
  13. 训练模型迭代10个周期,做可视化操作
# 导入包,引入Fashion-MNIST数据集
import torch
from IPython import display
from d2l import torch as d2l

batch_size = 256
train_iter, test_iter = d2l.load_data_fashion_mnist(batch_size)


"""
    初始化化模型参数:
    1、原始图像为28×28,展平为784的向量
    2、数据集有10个类别,输出维度为10
    3、权重为784×10的矩阵,偏置为1×10的向量
    4、使用正态分布N(0, 0.01)来初始化权重w,偏置b初始化为0
"""
num_inputs = 784
num_outputs = 10

W = torch.normal(0, 0.01, size=(num_inputs, num_outputs), requires_grad=True)
b = torch.zeros(num_outputs, requires_grad=True)


"""
    定义softmax操作:softmax(X)=exp(X)/∑(exp(X))
    1、对X做指数操作,为分子
    2、对指数操作的X求和作为分母,保持求和X的维度不变
    3、相除得到softmax(X)
"""
def softmax(X):
    X_exp = torch.exp(X)
    partition = X_exp.sum(1, keepdim=True)
    return X_exp / partition # 这里应用了广播机制


"""
    定义模型:softmax(W*X + b)
    1、数据传递到模型之前,将原始图像展平为向量
    2、X.reshape((-1, W.shape[0]):行不管,将列转换为权重W相同的行数
"""
def net(X):
    return softmax(torch.matmul(X.reshape(-1, W.shape[0]), W)+b)


"""
    实现交叉熵损失函数:-∑ylog(y')
    1、y'是y_hat预测值,y是y真实值
    2、range(len(y')):预测值y'中元素的集合
    3、预测值y'与真实值y做交叉熵操作
"""
def cross_entropy(y_hat, y):
    return - torch.log(y_hat[range(len(y_hat)), y])

cross_entropy(y_hat, y)


"""
    计算预测正确的数量:
    1、y_hat是矩阵,第二个维度储存每个类的预测分数(y_hat.shape[1]),使用argmax最大元素的索引来获取类别
    2、将预测类别与真实y元素进行比较,通过"=="输出0(错误)或者1(正确)
    3、将正确预测的数量相加
"""
def accuracy(y_hat, y): #@save
    """计算预测正确的数量"""
    if len(y_hat.shape) > 1 and y_hat.shape[1] > 1:
        y_hat = y_hat.argmax(axis=1)
    cmp = y_hat.type(y.dtype) == y
    return float(cmp.type(y.dtype).sum())



"""
    计算在指定数据集上模型的精度:
    1、将模型设置为评估模式
    2、将正确预测数和预测总数进行储存
    3、精度为:正确预测数/总预测数
"""
def evaluate_accuracy(net, data_iter): #@save
    """计算在指定数据集上模型的精度"""
    if isinstance(net, torch.nn.Module):
        net.eval()    # 将模型设置为评估模式
    metric = Accumulator(2)  # 正确预测数、预测总数
    with torch.no_grad():
        for X,y in data_iter:
            metric.add(accuracy(net(X), y), y.numel())
    return metric[0] / metric[1]


"""
    定义一个实用类Accumulator,对n个变量进行累加:
    1、初始化根据传入n的大小来创建空间,全部初始化为0
    2、把原来类中对应位置的data与新传入的args相加(float格式),从而达到累加效果
    3、重新设置空间大小并初始化
    4、实现类似数组的取操作
"""
class Accumulator:  #@save
    """在n个变量上累加"""
    def __init__(self, n):
        self.data = [0.0] * n
    
    # zip() 函数用于将可迭代的对象作为参数,将对象中对应的元素打包成一个个元组,然后返回由这些元组组成的列表。
    # 如果各个迭代器的元素个数不一致,则返回列表长度与最短的对象相同,利用 * 号操作符,可以将元组解压为列表。
    def add(self, *args):
        self.data = [a + float(b) for a, b in zip(self.data, args)]
     
    def reset(self):
        self.data = [0.0] * len(self.data)
        
    def __getitem__(self, idx):
        return self.data[idx]


"""
    训练模型一个迭代周期:
    1、将模型设置为训练模式
    2、设置Accumulator类对3个变量进行储存:训练损失总和、训练准确度总和、样本数
    3、在训练集中计算损失loss及其梯度,使用内置优化器或者自定义优化器进行更新
    4、对Accumulator类中储存的3个变量进行相加
    5、返回训练损失(损失/样本数)和训练精度(训练精确的总和/样本数)
"""
def train_epoch_ch3(net, train_iter, loss, updater): #@save
    """训练模型一个迭代周期(定义见第3章)"""
    # 将模型设置为训练模式
    if isinstance(net, torch.nn.Module):
        net.train()
    # 训练损失总和、训练准确度总和、样本数
    metric = Accumulator(3)
    for X, y in train_iter:
        # 计算梯度并更新参数
        y_hat = net(X)
        l = loss(y_hat, y)
        if isinstance(updater, torch.optim.Optimizer):
            # 使用pytorch内置的优化器和损失函数
            updater.zeros_grad()
            l.mean().backward()
            updater.step()
        else:
            # 使用定制的优化器和损失函数
            l.sum().backward()
            updater(X.shape[0])
        metric.add(float(l.sum()), accuracy(y_hat, y), y.numel())
    # 返回训练损失和训练精度
    return metric[0] / metric[2], metric[1] / metric[2]



"""
    定义在动画中绘制数据的程序类Animator
"""
class Animator:  #@save
    """在动画中绘制数据"""
    def __init__(self, xlabel=None, ylabel=None, legend=None, xlim=None,
                 ylim=None, xscale='linear', yscale='linear',
                 fmts=('-', 'm--', 'g-.', 'r:'), nrows=1, ncols=1,
                 figsize=(3.5, 2.5)):
        # 增量地绘制多条线
        if legend is None:
            legend = []
        d2l.use_svg_display()
        self.fig, self.axes = d2l.plt.subplots(nrows, ncols, figsize=figsize)
        if nrows * ncols == 1:
            self.axes = [self.axes, ]
        # 使用lambda函数捕获参数
        self.config_axes = lambda: d2l.set_axes(
            self.axes[0], xlabel, ylabel, xlim, ylim, xscale, yscale, legend)
        self.X, self.Y, self.fmts = None, None, fmts

    def add(self, x, y):
        # 向图表中添加多个数据点
        if not hasattr(y, "__len__"):
            y = [y]
        n = len(y)
        if not hasattr(x, "__len__"):
            x = [x] * n
        if not self.X:
            self.X = [[] for _ in range(n)]
        if not self.Y:
            self.Y = [[] for _ in range(n)]
        for i, (a, b) in enumerate(zip(x, y)):
            if a is not None and b is not None:
                self.X[i].append(a)
                self.Y[i].append(b)
        self.axes[0].cla()
        for x, y, fmt in zip(self.X, self.Y, self.fmts):
            self.axes[0].plot(x, y, fmt)
        self.config_axes()
        display.display(self.fig)
        display.clear_output(wait=True)


"""
    训练模型:
    1、在train_iter访问的数据集上训练一个模型net
    2、训练函数运行多个迭代周期
    3、每个迭代周期结束,利用test_acc访问的测试集数据进行评估
    4、利用Animator类来可视化训练进度
"""
def train_ch3(net, train_iter, test_iter, loss, num_epochs, updater): #@save
    """训练模型(定义见第三章)"""
    # x轴为'epoch',定义域为[1,迭代周期];y轴为[0.3, 0.9];添加图例:train loss, train acc, test acc
    animator = Animator(xlabel='epoch', xlim=[1, num_epochs], ylim=[0.3, 0.9],
                       legend=['train loss', 'trian acc', 'test acc'])
    
    for epoch in range(num_epochs):
        # train_metrics储存的是训练损失和训练精度
        train_metrics = train_epoch_ch3(net, train_iter, loss, updater)
        test_acc = evaluate_accuracy(net, test_iter)
        animator.add(epoch + 1, train_metrics + (test_acc,))
    train_loss, train_acc = train_metrics
    assert train_loss < 0.5, train_loss
    assert train_acc <= 1 and train_acc > 0.7, train_acc
    assert test_acc <=1 and test_acc > 0.7, test_acc


"""
    定义优化器:
    1、使用d2l库中的小批量随机梯度下降来优化模型的损失函数
"""
lr = 0.1
def updater(batch_size):
    return d2l.sgd([W, b], lr, batch_size)


"""
    训练模型迭代10个周期:
    1、可视化train loss, train acc, test acc
"""
num_epochs = 10
train_ch3(net, train_iter, test_iter, cross_entropy, num_epochs, updater)
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值