【算法】电机增量式pid

双电机增量式pid的算法

硬件采用欧姆龙500线编码器采集实时脉冲速度 由于ftm资源紧张所以只有采用了一路的正交解码模块 而另一路采用的是lptmr模块的脉冲计数功能在软件编写上有少许差别。
本文档记录了在k60dn 144pin 上的

int16 RightDuty = 0,LeftDuty = 0;						//占空比承载参量
int error_0_r=0,d_error_r=0,dd_error_r=0;              	//电机误差过渡参量
int vi_e_r=0,vi_d_r=0; 
int error_0_l=0,d_error_l=0,dd_error_l=0;              
int vi_e_l=0,vi_d_l=0;

float SpeedKp=30;                                      	//电机PID参数35
float SpeedKi=0; //                                    	//10
float SpeedKd=250;

/************************************************** 
** 函数名称: void MotorControl(void)
** 功能描述: 电机速度控制函数
** 输    入:
** 输    出: 
** 说明:正交解码获取编码器读数后 pid进行调节
***************************************************/
void MotorControl(void)
{
	volatile int16 right_pulseval = 0,left_pulseval = 0;
	
    right_pulseval = FTM_QUAD_get(FTM2);                    	//获取FTM 正交解码 的脉冲数(负数表示反方向)
	FTM_QUAD_clean(FTM2);                              			//清空正交解码计数寄存器
	
    left_pulseval = lptmr_pulse_get();          				//获取脉冲计数值	
	lptmr_pulse_clean();                   						//清空脉冲计数器计算值
	
	
	if(right_pulseval < 0)										//脉冲计数这一路依靠另一路的正交解码获取方向
	{
		left_pulseval = -left_pulseval;
	} 
	if(STOP_flag||Endline_flag)                         		//遥控器或者终点线停车
	{
		R_prespeed_speed=0;  
		L_prespeed_speed=0;
	}	
	
    error_0_r = R_prespeed_speed - right_pulseval ;             //期望脉冲数-实际脉冲数
    d_error_r = error_0_r - vi_e_r;                           	//本次误差-上次误差
    dd_error_r = d_error_r - vi_d_r;                          	//本次误差-上次误差-(上次本次误差-上次上次误差)
    vi_e_r = error_0_r;                                     	//保存上次误差的值
    vi_d_r = d_error_r;                                     	//保存上次本次误差-上次误差的值
	
    error_0_l = L_prespeed_speed - left_pulseval ;              //期望脉冲数-实际脉冲数
    d_error_l = error_0_l - vi_e_l;                           	//本次误差-上次误差
    dd_error_l = d_error_l - vi_d_l;                          	//本次误差-上次误差-(上次本次误差-上次上次误差)
    vi_e_l = error_0_l;                                     	//保存上次误差的值
    vi_d_l = d_error_l;                                     	//保存上次本次误差-上次误差的值
	
    RightDuty += (int)(SpeedKp*error_0_r
					   + SpeedKi*d_error_r
						   + SpeedKd*dd_error_r);//增量式pid  
	
	LeftDuty  += (int)(SpeedKp*error_0_l 
					   + SpeedKi*d_error_l 
						   + SpeedKd*dd_error_l);
	
	if(R_prespeed_speed == 0)  //&& L_prespeed_speed == 0                               	//制动轮胎抱死 正反转交替
	{
		if(RightDuty < 0)
        {  
            if(RightDuty<-4000)
            {
                RightDuty = -4000;
            }
            FTM_PWM_Duty(FTM0 ,FTM_CH0 ,-RightDuty);
            FTM_PWM_Duty(FTM0 ,FTM_CH1 , 0);
        }
        else 
        {
            if(RightDuty>9000)
            {
                RightDuty = 9000;
            }
            
            FTM_PWM_Duty(FTM0 ,FTM_CH0 ,0);
            FTM_PWM_Duty(FTM0 ,FTM_CH1 ,RightDuty);
        }
		
		if(LeftDuty < 0)
        {  
            if(LeftDuty<-4000)
            {
                LeftDuty = -4000;
            }
            FTM_PWM_Duty(FTM0 ,FTM_CH3 ,-LeftDuty);
            FTM_PWM_Duty(FTM0 ,FTM_CH2 , 0);
        }
        else 
        {
            if(LeftDuty>9000)
            {
                LeftDuty = 9000;
            }
			
            FTM_PWM_Duty(FTM0 ,FTM_CH3 ,0);
            FTM_PWM_Duty(FTM0 ,FTM_CH2 ,LeftDuty);
            
        }
	}
	else
	{
		if( error_0_r < -10)                                 	//实际脉冲数远大于期望脉冲时电机反转减速
		{     
			FTM_PWM_Duty(FTM0,FTM_CH0,500);                 		//反转
			FTM_PWM_Duty(FTM0,FTM_CH1,0);
		}
		else
		{ 
			if(RightDuty > 9000)                               	//电机占空比限幅
			{
				RightDuty = 9000;
			}     
			else if(RightDuty < 0)
			{
				RightDuty = 0;
			}
			FTM_PWM_Duty(FTM0,FTM_CH0,0);             	//电机正转
			FTM_PWM_Duty(FTM0,FTM_CH1,RightDuty);
		}
		
		if( error_0_l < -10)                                 	//实际脉冲数远大于期望脉冲时电机反转减速
		{     
			FTM_PWM_Duty(FTM0,FTM_CH3,500);                 		//反转
			FTM_PWM_Duty(FTM0,FTM_CH2,0);
		}
		else
		{ 
			if(LeftDuty > 9000)                               	//电机占空比限幅
			{
				LeftDuty = 9000;
			}     
			else if(LeftDuty < 0)
			{
				LeftDuty = 0;
			}
			FTM_PWM_Duty(FTM0,FTM_CH3,0);             	//电机正转
			FTM_PWM_Duty(FTM0,FTM_CH2,LeftDuty);
		}
	}
PID电机控制目录 第1 章 数字PID 控制 1.1 PID 控制原理 1.2 连续系统的模拟PID 仿真 1.3 数字PID 控制 1.3.1 位置式PID 控制算法 1.3.2 连续系统的数字PID 控制仿真 1.3.3 离散系统的数字PID 控制仿真 1.3.4 增量式PID 控制算法及仿真 1.3.5 积分分离PID 控制算法及仿真 1.3.6 抗积分饱和PID 控制算法及仿真 1.3.7 梯形积分PID 控制算法 1.3.8 变速积分PID 算法及仿真 1.3.9 带滤波器的PID 控制仿真 1.3.10 不完全微分PID 控制算法及仿真 1.3.11 微分先行PID 控制算法及仿真 1.3.12 带死区的PID 控制算法及仿真 1.3.13 基于前馈补偿的PID 控制算法及仿真 1.3.14 步进式PID 控制算法及仿真 第2 章 常用的PID 控制系统 2.1 单回路PID 控制系统 2.2 串级PID 控制 2.2.1 串级PID 控制原理 2.2.2 仿真程序及分析 2.3 纯滞后系统的大林控制算法 2.3.1 大林控制算法原理 2.3.2 仿真程序及分析 2.4 纯滞后系统的Smith 控制算法 2.4.1 连续Smith 预估控制 2.4.2 仿真程序及分析 2.4.3 数字Smith 预估控制 2.4.4 仿真程序及分析 第3 章 专家PID 控制和模糊PID 控制 3.1 专家PID 控制 3.1.1 专家PID 控制原理 3.1.2 仿真程序及分析 3.2 模糊自适应整定PID 控制 3.2.1 模糊自适应整定PID 控制原理 3.2.2 仿真程序及分析 3.3 模糊免疫PID 控制算法 3.3.1 模糊免疫PID 控制算法原理 3.3.2 仿真程序及分析 第4 章 神经PID 控制 4.1 基于单神经元网络的PID 智能控制 4.1.1 几种典型的学习规则 4.1.2 单神经元自适应PID 控制 4.1.3 改进的单神经元自适应PID 控制 4.1.4 仿真程序及分析 4.1.5 基于二次型性能指标学习算法的单神经元自适应PID 控制 4.1.6 仿真程序及分析 4.2 基于BP 神经网络整定的PID 控制 4.2.1 基于BP 神经网络的PID 整定原理 4.2.2 仿真程序及分析 4.3 基于RBF 神经网络整定的PID 控制 4.3.1 RBF 神经网络模型 4.3.2 RBF 网络PID 整定原理 4.3.3 仿真程序及分析 4.4 基于RBF 神经网络辨识的单神经元PID 模型参考自适应控制 4.4.1 神经网络模型参考自适应控制原理 4.4.2 仿真程序及分析 4.5 基于CMAC(神经网络)与PID 的并行控制 4.5.1 CMAC 概述 4.5.2 CMAC 与PID 复合控制算法 4.5.3 仿真程序及分析 4.6 CMAC 与PID 并行控制的Simulink 仿真 4.6.1 Simulink 仿真方法 4.6.2 仿真程序及分析 第5 章 基于遗传算法整定的PID 控制 5.1 遗传算法的基本原理 5.2 遗传算法的优化设计 5.2.1 遗传算法的构成要素 5.2.2 遗传算法的应用步骤 5.3 遗传算法求函数极大值 5.3.1 遗传算法求函数极大值实例 5.3.2 仿真程序 5.4 基于遗传算法的PID 整定 5.4.1 基于遗传算法的PID 整定原理 5.4.2 基于实数编码遗传算法的PID 整定 5.4.3 仿真程序 5.4.4 基于二进制编码遗传算法的PID 整定 5.4.5 仿真程序 5.5 基于遗传算法摩擦模型参数辨识的PID 控制 5.5.1 仿真实例 5.5.2 仿真程序 第6 章 先进PID 多变量解耦控制 6.1 PID 多变量解耦控制 6.1.1 PID 解耦控制原理 6.1.2 仿真程序及分析 6.2 单神经元PID 解耦控制 6.2.1 单神经元PID 解耦控制原理 6.2.2 仿真程序及分析 6.3 基于DRNN 神经网络整定的PID 解耦控制 6.3.1 基于DRNN 神经网络参数自学习PID 解耦控制原理 6.3.2 DRNN 神经网络的Jacobian 信息辨识 6.3.3 仿真程序及分析 第7 章 几种先进PID 控制方法 7.1 基于干扰观测器的PID 控制 7.1.1 干扰观测器设计原理 7.1.2 连续系统的控制仿真 7.1.3 离散系统的控制仿真 7.2 非线性系统的PID 鲁棒控制 7.2.1 基于NCD 优化的非线性优化PID 控制 7.2.2 基于NCD 与优化函数结合的非线性优化PID 控制 7.3 一类非线性PID 控制器设计 7.3.1 非线性控制器设计原理 7.3.2 仿真程序及分析 7.4 基于重复控制补偿的高精度PID 控制 7.4.1 重复控制原理 7.4.2 基于重复控制补偿的PID 控制 7.4.3 仿真程序及分析 7.5 基于零相差前馈补偿的PID 控制 7.5.1 零相差控制原理 7.5.2 基于零相差前馈补偿的PID 控制 7.5.3 仿真程序及分析 7.6 基于卡尔曼滤波器的PID 控制 7.6.1 卡尔曼滤波器原理 7.6.2 仿真程序及分析 7.6.3 基于卡尔曼滤波器的PID 控制 7.6.4 仿真程序及分析 7.7 单级倒立摆的PID 控制 7.7.1 单级倒立摆建模 7.7.2 单级倒立摆控制 7.7.3 仿真程序及分析 7.8 吊车-双摆系统的控制 7.8.1 吊车-双摆系统的建模 7.8.2 吊车-双摆系统的仿真 第8 章 灰色PID 控制 8.1 灰色控制原理 8.1.1 生成数列 8.1.2 GM 灰色模型 8.2 灰色PID 控制 8.2.1 灰色PID 控制的理论基础 8.2.2 连续系统灰色PID 控制 8.2.3 仿真程序及分析 8.2.4 离散系统灰色PID 控制 8.2.5 仿真程序及分析 8.3 灰色PID 的位置跟踪 8.3.1 连续系统灰色PID 位置跟踪 8.3.2 仿真程序及分析 8.3.3 离散系统灰色PID 位置跟踪 8.3.4 仿真程序及分析 第9 章 伺服系统PID 控制 9.1 伺服系统低速摩擦条件下PID 控制 9.1.1 Stribeck 摩擦模型描述 9.1.2 一个典型伺服系统描述 9.1.3 仿真程序及分析 9.2 伺服系统三环的PID 控制 9.2.1 伺服系统三环的PID 控制原理 9.2.2 仿真程序及分析 9.3 二质量伺服系统的PID 控制 9.3.1 二质量伺服系统的PID 控制原理 9.3.2 仿真程序及分析 第10 章 PID 实时控制的C++语言设计及应用 10.1 M 语言的C++转化 10.2 基于C++的三轴飞行模拟转台伺服系统PID 实时控制 10.2.1 控制系统构成 10.2.2 系统各部分功能的软件设计 10.2.3 仿真程序及分析 参考文献
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值