32位无符号除法器设计
恢复余数法:
恢复余数除法的基本思路是从“部分余数”中减去除数,如果结果为负(不够减),则恢复原来的部分余数,商0.
寄存器使用:reg_r 存放被除数a
reg_b 存放除数b
reg_r 存放余数(初始清零)
具体做法:
做减法时,减数是reg_b中的除数,被减数是reg_r中的余数左移一位,最低位由reg_q(被除数)的最高位补充。为了能够判断相减结果的正负,减法器的位数要比除数的位数多出一位。若相减为正,则减法器输出的最高位为0;若相减为负,则减法器输出的最高位为1。
若相减结果为正,把相减结果写入reg_r(部分余数),reg_q的内容左移一位,最低位放入商1。
若相减结果为负,把被减数写入reg_r(恢复之前的余数),reg_q的内容左移一位,最低位放入商0。
循环上述减法,知道被除数全部移除reg_q为止。计算结束后reg_q中内容是商,reg_r中的内容是余数
Tips:
之所以能够一位一位减,是因为若一个数a可以除b,则a左移一位之后(相当于乘2),仍然可除b。
不恢复余数除法
在恢复余数除法算法中,如果部分余数为负,则要恢复原来的余数并左移。设部分余数为R,除数为B。恢复余数相当于R+B,左移相当于(R+B)*2。以上操作完成后进行下一轮的迭代,即从部分余数中减去B。我们有以下的等式:
(R+B)2-B=R2+B

最低0.47元/天 解锁文章
3064





