2020年3月学习——线代篇

字数较多,写这篇文章的原始目的是为了我后续学习深度学习,如有错误请见谅。

1 浙大四版目录

  1. 行列式
  2. 矩阵及运算
  3. 矩阵的初等变换与线性方程组
  4. 向量的线性相关性
  5. 相似矩阵及二次型
  6. 线性空间与线性变换

2 学习

2.1 行列式

行列式的一些性质

性质1:行列式与它的转置行列式相等
性质2:对换行列式的两行(列),行列式变号
推论:如果行列式两行(列)完全相同或成比例,行列式为0
性质3:行列式的某一行(列)中的所有元素都乘某一数 k k k,等于用数 k k k乘此行列式 ∣ a b k ∗ c k ∗ d ∣ = k ∗ ∣ a b c d ∣ \begin{vmatrix}a&b\\k*c&k*d\end{vmatrix}=k*\begin{vmatrix}a&b\\c&d\end{vmatrix} akcbkd=kacbd推论:行列式中某一行(列)的所有元素的公因子可以提到行列式记号的外面
性质4:若某一行(列)的元素都是两数之和: ∣ a b c 1 + c 2 d 1 + d 2 ∣ = ∣ a b c 1 d 1 ∣ = ∣ a b c 2 d 2 ∣ \begin{vmatrix}a&b\\c_1+c_2&d_1+d_2\end{vmatrix}=\begin{vmatrix}a&b\\c_1&d_1\end{vmatrix}=\begin{vmatrix}a&b\\c_2&d_2\end{vmatrix} ac1+c2bd1+d2=ac1bd1=ac2bd2
性质5:把行列式的某一行(列)的各元素乘同一数然后加到另一行(列)对应的元素上去,行列式不变 ∣ a b c d ∣ = ∣ a b c + k ∗ a d + k ∗ b ∣ \begin{vmatrix}a&b\\c&d\end{vmatrix}=\begin{vmatrix}a&b\\c+k*a&d+k*b\end{vmatrix} acbd=ac+kabd+kb

余子式

n n n阶行列式中,把 ( i , j ) (i,j) (i,j) a i j a_{ij} aij所在的第 i i i行和第 j j j列划去后,留下来的 n − 1 n-1 n1阶行列式叫做 ( i , j ) (i,j) (i,j) a i j a_{ij} aij余子式,记作 M i j M_{ij} Mij,记 A i j = ( − 1 ) i + j M i j A_{ij}=(-1)^{i+j}M_{ij} Aij=(1)i+jMij A i j A_{ij} Aij叫做 ( i , j ) (i,j) (i,j) a i j a_{ij} aij代数余子式。例如: ∣ a 11 a 12 a 13 a 21 a 22 a 23 a 31 a 32 a 33 ∣ \begin{vmatrix}a_{11}&a_{12}&a_{13}\\a_{21}&a_{22}&a_{23}\\a_{31}&a_{32}&a_{33}\end{vmatrix} a11a21a31a12a22a32a13a23a33 ( 3 , 2 ) (3,2) (3,2)元的余子式和代数余子式分别为: M 32 = ∣ a 11 a 13 a 21 a 23 ∣ M_{32}=\begin{vmatrix}a_{11}&&a_{13}\\a_{21}&&a_{23}\end{vmatrix} M32=a11a21a13a23 A 32 = ( − 1 ) ( 3 + 2 ) M 32 = − M 32 A_{32}=(-1)^{(3+2)}M_{32}=-M_{32} A32=(1)(3+2)M32=M32
引理:一个 n n n阶行列式,如果其中第 i i i行所有元素除 ( i , j ) (i,j) (i,j) a i j a_{ij} aij外都为零,那么这行列式等于 a i j a_{ij} aij与它的代数余子式的乘积,即 D = a i j A i j D=a_{ij}A_{ij} D=aijAij
定理(行列式按行(列)展开法则):行列式等于它的任一行(列)的各元素与其对应的代数余子式乘积之和,对于行的情况即: D = a i 1 A i 1 + a i 2 A i 2 + . . . + a i n A i n ( i = 1 , 2 , . . . , n ) D=a_{i1}A_{i1}+a_{i2}A_{i2}+...+a_{in}A_{in}(i=1,2,...,n) D=ai1Ai1+ai2Ai2+...+ainAin(i=1,2,...,n)
推论:行列式某一行(列)的元素与另一行(列)的对应元素的代数余子式乘积之和等于零,对于行的情况即: D = a i 1 A j 1 + a i 2 A j 2 + . . . + a i n A j n = 0     ( i ≠ j ) D=a_{i1}A_{j1}+a_{i2}A_{j2}+...+a_{in}A_{jn}=0~~~(i\neq{j}) D=ai1Aj1+ai2Aj2+...+ainAjn=0   (i=j)

2.2 矩阵运算

矩阵

( A T ) T = A ( A + B ) T = A T + B T ( A B ) T = B T A T A ( B + C ) = A B + A C ( B + C ) A = B A + C A \begin{aligned}&(A^T)^T=A\\&(A+B)^T=A^T+B^T\\&(AB)^T=B^TA^T\\&A(B+C)=AB+AC\\&(B+C)A=BA+CA\end{aligned} (AT)T=A(A+B)T=AT+BT(AB)T=BTATA(B+C)=AB+AC(B+C)A=BA+CA n n n阶方阵的行列式:
∣ A T ∣ = ∣ A ∣ ∣ λ A ∣ = λ n ∣ A ∣ ∣ A B ∣ = ∣ A ∣ ∣ B ∣ ∣ A B ∣ = ∣ B A ∣ \begin{aligned}&|A^T|=|A|\\&|\lambda{A}|=\lambda^n|A|\\&|AB|=|A||B|\\&|AB|=|BA|\end{aligned} AT=AλA=λnAAB=ABAB=BA

伴随矩阵

行列式 ∣ A ∣ |A| A的各个元素的代数余子式 A i j A_{ij} Aij所构成的如下矩阵
A ∗ = ( A 11 A 21 ⋯ A n 1 A 12 A 21 ⋯ A n 2 ⋮ ⋮ ⋮ A 1 n A 2 n ⋯ A n n ) A^*=\begin{pmatrix}A_{11}&A_{21}&\cdots&A_{n1}\\A_{12}&A_{21}&\cdots&A_{n2}\\\vdots&\vdots&&\vdots\\A_{1n}&A_{2n}&\cdots&A_{nn}\end{pmatrix} A=A11A12A1nA21A21A2nAn1An2Ann
称为矩阵 ∣ A ∣ |A| A的伴随矩阵,简称伴随阵,满足: A A ∗ = A ∗ A = ∣ A ∣ E AA^*=A^*A=|A|E AA=AA=AE

逆矩阵

对于 n n n阶矩阵 A A A,如果有一个 n n n阶矩阵 B B B,使 A B = B A = E AB=BA=E AB=BA=E则矩阵 A A A可逆, B B B A A A的逆矩阵,逆矩阵记为 A − 1 A^{-1} A1,即 B = A − 1 B=A^{-1} B=A1矩阵的逆矩阵是惟一的

  • 定理1:若矩阵 A A A可逆,则 ∣ A ∣ ≠ 0 |A|\neq0 A=0
  • 定理2:若 ∣ A ∣ ≠ 0 |A|\neq0 A=0,则矩阵 A A A可逆,且 A − 1 = 1 ∣ A ∣ A ∗ A_{-1}=\frac{1}{|A|}A^* A1=A1A 其中 A ∗ A^* A为矩阵 A A A的伴随矩阵。
  • ∣ A ∣ = 0 |A|=0 A=0时, A A A称为奇异矩阵,否则成为非奇异矩阵 A A A是可逆矩阵的充分必要条件是 ∣ A ∣ ≠ 0 |A|\neq0 A=0,即可逆矩阵就是非奇异矩阵。
  • 克莱姆法则,又译克拉默法则(Cramer’s Rule)是线代中求解线性方程组的定理, { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , . . . . . . . . . . . . a n 1 x 1 + a n 2 x 2 + ⋯ + a n n x n = b n , \begin{cases}a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\............\\a_{n1}x_1+a_{n2}x_2+\cdots+a_{nn}x_n=b_n,\end{cases} a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b2,............an1x1+an2x2++annxn=bn,若上述线性方程组的系数矩阵 A A A的行列式不等于零,那么方程组有惟一解 x 1 = ∣ A 1 ∣ ∣ A ∣ ,   x 2 = ∣ A 2 ∣ ∣ A ∣ ,   ⋯   ,   x n = ∣ A n ∣ ∣ A ∣ x_1=\frac{|A_1|}{|A|},\,x_2=\frac{|A_2|}{|A|},\,\cdots,\,x_n=\frac{|A_n|}{|A|} x1=AA1,x2=AA2,,xn=AAn其中 A j    ( j = 1 , 2 , . . . , n ) A_j\,\,(j=1,2,...,n) Aj(j=1,2,...,n)是指 A A A中第 j j j列的元素替换为方程组右端常数项
矩阵分块

矩阵可以纵横划分为若干个小块(子块)来计算

  • A = ( A 11 ⋯ A 1 r ⋮ ⋮ A s 1 ⋯ A s r ) A=\begin{pmatrix} A_{11}&\cdots&A_{1r}\\\vdots&&\vdots\\A_{s1}&\cdots&A_{sr}\end{pmatrix} A=A11As1A1rAsr A T = ( A 11 T ⋯ A s 1 T ⋮ ⋮ A 1 r T ⋯ A s r T ) A^T=\begin{pmatrix} A_{11}^T&\cdots&A_{s1}^T\\\vdots&&\vdots\\A_{1r}^T&\cdots&A_{sr}^T\end{pmatrix} AT=A11TA1rTAs1TAsrT
  • 分块对角矩阵:设 A A A n n n阶方阵,若 A A A的分块矩阵只有在对角线上有非零子块,其余子块都为零矩阵,且在对角线上的子块都是方阵,即 A = ( A 1 O A 2 ⋱ O A s ) A=\begin{pmatrix} A_1&&&O\\&A_2&&\\&&\ddots\\O&&&A_s\end{pmatrix} A=A1OA2OAs性质: ∣ A ∣ = ∣ A 1 ∣ ∣ A 2 ∣ . . . ∣ A s ∣ |A|=|A_1||A_2|...|A_s| A=A1A2...As ∣ A i ∣ ≠ 0 |A_i|\neq0 Ai=0,则 ∣ A ∣ ≠ 0 |A|\neq0 A=0,并有 A − 1 = ( A 1 − 1 O A 2 − 1 ⋱ O A s − 1 ) A^{-1}=\begin{pmatrix} A_1^{-1}&&&O\\&A_2^{-1}&&\\&&\ddots\\O&&&A_s^{-1}\end{pmatrix} A1=A11OA21OAs1

2.3 矩阵初等变换及线性方程组

初等变换

定义1:初等(行)变换
1、对换两行
2、以数 k ≠ 0 k≠0 k=0乘某一行中的所有元素
3、把某一行的所有元的 k k k倍加到另一行对应的元上去
矩阵 A A A经有限次初等变换变成矩阵 B B B,就称矩阵 A A A B B B等价

定义2:行阶梯型矩阵——满足下述条件的非零矩阵(1) 非零行在零行的上面;(2) 非零行首个非零元素所在列上一行的首个非零元素所在列的右边
若行阶梯型矩阵满足(1) 非零行的首非零元素为1;(2) 首非零元所在的列的其他元均为0,则称该矩阵为行最简形矩阵

定理1:设 A A A B B B m × n m\times{n} m×n矩阵,那么

  • A A A行等价于 B B B    ⟺    \iff 存在 m m m阶可逆矩阵 P P P,使 P A = B PA=B PA=B
  • A A A列等价于 B B B    ⟺    \iff 存在 n n n阶可逆矩阵 Q Q Q,使 A Q = B AQ=B AQ=B
  • A A A等价于 B B B    ⟺    \iff 存在 m m m阶可逆矩阵 P P P n n n阶可逆矩阵 Q Q Q,使 P A Q = B PAQ=B PAQ=B

推论:方阵 A A A可逆    ⟺    \iff A A A行等价于单位阵 E E E(可逆方阵 可以化为同阶单位阵)

矩阵的秩

k阶子式:在 m × n m\times{n} m×n矩阵 A A A中,任取 k k k行与 k k k ( k ≤ m , k ≤ n ) (k≤m,k≤n) (km,kn),位于这些行列交叉处的 k 2 k^2 k2个元素,不改变它们在 A A A中所处的位置次序而得的 k k k阶行列式,称为矩阵 A A A k k k阶子式
引理:若 A A A B B B行等价,则 A A A B B B中非零子式的最高阶数相等。

矩阵的秩:设在矩阵 A A A中有一个不等于0的 r r r阶子式 D D D,且所有 r + 1 r+1 r+1阶子式(若存在)全等于0,则 D D D称为 A A A最高阶非零子式,数r称为矩阵 A A A,记作 R ( A ) R(A) R(A),零矩阵的秩为0。

  • 可逆矩阵(非奇异矩阵)又称满秩矩阵,不可逆矩阵(奇异矩阵)又称降秩矩阵
  • A A A等价于 B B B,则 R ( A ) = R ( B ) R(A)=R(B) R(A)=R(B)
  • R ( A ) = R ( A T ) R(A)=R(A^T) R(A)=R(AT)
  • 若可逆矩阵 P , Q P,Q P,Q使 P A Q = B PAQ=B PAQ=B,则 R ( A ) = R ( B ) R(A)=R(B) R(A)=R(B)
  • 行阶梯型矩阵的秩等于非零行行数

其他一些常用性质:

  • 0 ≤ R ( A m × n ) ≤ m i n { m , n } 0≤R(A_{m\times{n}})≤min\{m,n\} 0R(Am×n)min{m,n}
  • m a x { R ( A ) , R ( B ) } ≤ R ( A , B ) ≤ R ( A ) + R ( B ) max\{R(A),R(B)\}≤R(A,B)≤R(A)+R(B) max{R(A),R(B)}R(A,B)R(A)+R(B)
  • R ( A + B ) ≤ R ( A ) + R ( B ) R(A+B)≤R(A)+R(B) R(A+B)R(A)+R(B)
  • R ( A B ) ≤ m i n { R ( A ) , R ( B ) } R(AB)≤min\{R(A),R(B)\} R(AB)min{R(A),R(B)}
  • A m × n B n × l = O A_{m\times{n}}B_{n\times{l}}=O Am×nBn×l=O,则 R ( A ) + R ( B ) ≤ n R(A)+R(B)≤n R(A)+R(B)n
  • A B = O AB=O AB=O,若A为列满秩矩阵,则 B = O B=O B=O
线性方程组的解

常数项全为0的线性方程组称为齐次线性方程组,显然,下列方程组为非齐次线性方程组。
{ a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , . . . . . . . . . . . . a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b m , \begin{cases}a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\............\\a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_m,\end{cases} a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b2,............am1x1+am2x2++amnxn=bm,上述方程组如果有解,就称它是相容的,如果无解就称不相容。
定理1: n n n元线性方程组 A x = b Ax=b Ax=b

  • 无解的充要条件是 R ( A ) < R ( A , b ) R(A)<R(A,b) R(A)<R(A,b)
  • 有惟一解的充要条件是 R ( A ) = R ( A , b ) = n R(A)=R(A,b)=n R(A)=R(A,b)=n
  • 有无限多解的充要条件是 R ( A ) = R ( A , b ) < n R(A)=R(A,b)<n R(A)=R(A,b)n

定理2: n n n元齐次线性方程组 A x = 0 Ax=0 Ax=0有非零解的充要条件是 R ( A ) < n R(A)<n R(A)<n
定理3: n n n线性方程组 A x = b Ax=b Ax=b有解的充要条件是 R ( A ) = R ( A , b ) R(A)=R(A,b) R(A)=R(A,b)
定理4: n n n线性方程组 A X = B AX=B AX=B有解的充要条件是 R ( A ) = R ( A , B ) R(A)=R(A,B) R(A)=R(A,B)
定理5:设 A B = C AB=C AB=C,则 R ( C ) ≤ m i n { R ( A ) , R ( B ) } R(C)≤min\{R(A),R(B)\} R(C)min{R(A),R(B)}

2.4 向量组的线性相关性

向量组及线性组合

定义1: n n n个有次序的数 a 1 , a 2 , . . . , a n a_1,a_2,...,a_n a1,a2,...,an所组成的数组称为 n n n维向量,这 n n n个数称为该向量的 n n n个分量。
定义2:给定向量组 A : a 1 , a 2 , . . . , a m A:a_1,a_2,...,a_m A:a1,a2,...,am,对于任意一组实数 k 1 , k 2 , . . . , k m k_1,k_2,...,k_m k1,k2,...,km,表达式 k 1 a 1 + k 2 a 2 + . . . + k m a m k_1a_1+k_2a_2+...+k_ma_m k1a1+k2a2+...+kmam称为向量组 A A A的一个线性组合 k 1 , k 2 , . . . k_1,k_2,... k1,k2,...称为这个线性组合的系数。给定向量组 A A A和向量 b b b,如果存在一组数 λ 1 , λ 2 , . . . , λ m λ_1,λ_2,...,λ_m λ1,λ2,...,λm使得 b = λ 1 a 1 + λ 2 a 2 + . . . + λ m a m b=λ_1a_1+λ_2a_2+...+λ_ma_m b=λ1a1+λ2a2+...+λmam则向量 b b b是向量组 A A A的线性组合,称向量 b b b能由向量组 A A A线性表示。
定理1:向量 b b b能由向量组 A : a 1 , a 2 , . . . , a m A:a_1,a_2,...,a_m A:a1,a2,...,am线性表示    ⟺    \iff A A A的秩= ( a 1 , a 2 , . . . , a m , b ) (a_1,a_2,...,a_m,b) (a1,a2,...,am,b)的秩

定义3:设有两个向量组 A : a 1 , a 2 , . . . , a m A:a_1,a_2,...,a_m A:a1,a2,...,am B : b 1 , b 2 , . . . , b l B:b_1,b_2,...,b_l B:b1,b2,...,bl,若 B B B中的每个向量都能由 A A A线性表示,则称向量组 B B B能由 A A A线性表示,若 A A A B B B能够相互线性表示,则称这两个向量组等价。
定理2:向量组 B B B能由向量组 A A A线性表示    ⟺    \iff R ( A ) = R ( A , B ) R(A)=R(A,B) R(A)=R(A,B)
推论:向量组 A A A B B B等价    ⟺    \iff R ( A ) = R ( B ) = R ( A , B ) R(A)=R(B)=R(A,B) R(A)=R(B)=R(A,B)
定理3:向量组 B B B能由向量组 A A A线性表示,则 R ( b 1 , b 2 , . . . ) ≤ R ( a 1 , a 2 , . . . ) R(b_1,b_2,...)≤R(a_1,a_2,...) R(b1,b2,...)R(a1,a2,...)

向量的线性相关性

定义1:给定向量组 A : a 1 , a 2 , . . . , a m A:a_1,a_2,...,a_m A:a1,a2,...,am,如果存在不全为零的数 k 1 , k 2 , . . . , k m k_1,k_2,...,k_m k1,k2,...,km,使 k 1 a 1 + k 2 a 2 + . . . + k m a m = 0 k_1a_1+k_2a_2+...+k_ma_m=0 k1a1+k2a2+...+kmam=0则称向量组 A A A线性相关的,否则称它线性无关。
定理1:

  • 向量组 A : a 1 , a 2 , . . . a m A:a_1,a_2,...a_m A:a1,a2,...am线性相关    ⟺    \iff R ( A ) ≤ m R(A)≤m R(A)m
  • 向量组 A A A线性无关    ⟺    \iff R ( A ) = m R(A)=m R(A)=m

定理2:

  • 若向量组 A : a 1 , a 2 , . . . , a m A:a_1,a_2,...,a_m A:a1,a2,...,am线性相关,则向量组 B : a 1 , a 2 , . . . , a m , a m + 1 B:a_1,a_2,...,a_m,a_{m+1} B:a1,a2,...,am,am+1也线性相关。反之,若 B B B线性无关,则向量组 A A A也线性无关。
  • m m m n n n维向量组成的向量组,当维数 n n n小于向量个数 m m m时一定线性相关,特别地 n + 1 n+1 n+1 n n n维度向量一定线性相关。
  • 设向量组 A : a 1 , a 2 , . . . , a m A:a_1,a_2,...,a_m A:a1,a2,...,am线性无关,而向量组 B : a 1 , . . . , a m , b B:a_1,...,a_m,b B:a1,...,am,b线性相关,则向量 b b b必能由向量组 A A A线性表示,且表示式是惟一的。
向量组的秩

定义1:设有向量组 A A A,如果能在 A A A中选出 r r r个向量 a 1 , a 2 , . . . , a r a_1,a_2,...,a_r a1,a2,...,ar,满足:
(1)向量组 A 0 : a 1 , a 2 , . . . , a r A_0:a_1,a_2,...,a_r A0:a1,a2,...,ar线性无关;(2)向量组 A A A中任意 r + 1 r+1 r+1个向量(若存在)都线性相关
那么称向量组 A 0 A_0 A0是向量组 A A A的一个最大线性无关向量组(最大无关组),最大无关组含有向量的个数 r r r称为向量组 A A A的秩,记作 R A R_A RA。只含有零向量的向量组没有最大无关组,规定秩为0。

  • 推论(最大无关组等价定义):设向量组 A 0 : a 1 , a 2 , . . . , a r A_0:a_1,a_2,...,a_r A0:a1,a2,...,ar是向量组 A A A的一个部分组,且满足:
    (1)向量组 A 0 A_0 A0线性无关;(2)向量组 A A A的任一向量都能由向量组 A 0 A_0 A0线性表示
    那么向量组 A 0 A_0 A0便是向量组 A A A的一个最大无关组。

定义2:矩阵的秩等于它的列向量组的秩,也等于它的行向量组的秩。

线性方程组的解的结构

设有齐次线性方程组1 { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = 0 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = 0 , . . . . . . . . . . . . a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = 0 , \begin{cases}a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=0,\\a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=0,\\............\\a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=0,\end{cases} a11x1+a12x2++a1nxn=0,a21x1+a22x2++a2nxn=0,............am1x1+am2x2++amnxn=0,写成向量方程 A x = 0 Ax=0 Ax=0,若 x 1 = ξ 11 , x 2 = ξ 21 , . . . , x n = ξ n 1 x_1=\xi_{11},x_2=\xi_{21},...,x_n=\xi_{n1} x1=ξ11,x2=ξ21,...,xn=ξn1为方程组1的解,则 x = ξ 1 = ( ξ 11 ξ 21 ⋮ ξ n 1 ) x=\xi_1=\begin{pmatrix}\xi_{11}\\\xi_{21}\\\vdots\\\xi_{n1}\end{pmatrix} x=ξ1=ξ11ξ21ξn1称为方程组的解向量
性质1:若 x = ξ 1 , x = ξ 2 x=\xi_1,x=\xi_2 x=ξ1,x=ξ2为上述向量方程的解,则 x = ξ 1 + ξ 2 x=\xi_1+\xi_2 x=ξ1+ξ2也是向量方程的解。
性质2:若 x = ξ 1 x=\xi_1 x=ξ1为上述向量方程的解, k k k为实数,则 x = k ξ x=k\xi x=kξ也是向量方程的解。

定理1:设 m × n m\times{n} m×n矩阵 A A A的秩 R ( A ) = r R(A)=r R(A)=r,则 n n n元齐次线性方程组 A x = 0 Ax=0 Ax=0的解集S的秩 R s = n − r R_s=n-r Rs=nr

设有非齐次线性方程组2 { a 11 x 1 + a 12 x 2 + ⋯ + a 1 n x n = b 1 , a 21 x 1 + a 22 x 2 + ⋯ + a 2 n x n = b 2 , . . . . . . . . . . . . a m 1 x 1 + a m 2 x 2 + ⋯ + a m n x n = b n , \begin{cases}a_{11}x_1+a_{12}x_2+\cdots+a_{1n}x_n=b_1,\\a_{21}x_1+a_{22}x_2+\cdots+a_{2n}x_n=b_2,\\............\\a_{m1}x_1+a_{m2}x_2+\cdots+a_{mn}x_n=b_n,\end{cases} a11x1+a12x2++a1nxn=b1,a21x1+a22x2++a2nxn=b2,............am1x1+am2x2++amnxn=bn,写成向量方程 A x = b Ax=b Ax=b
性质3:设 x = η 1 , x = η 2 x=\eta_1,x=\eta_2 x=η1,x=η2都是上述向量方程的解,则 x = η 1 − η 2 x=\eta_1-\eta_2 x=η1η2为对应的齐次线性方程组 A x = 0 Ax=0 Ax=0的解。
性质4:设 x = η x=\eta x=η A x = b Ax=b Ax=b的解, x = ξ x=\xi x=ξ是方程 A x = 0 Ax=0 Ax=0的解,则 x = ξ + η x=\xi+\eta x=ξ+η仍是方程 A x = b Ax=b Ax=b的解。

向量空间

定义1:设 V V V n n n维向量的集合,如果集合 V V V非空,且集合 V V V对于向量的加法及数乘两种运算封闭,那么就称集合 V V V为向量空间。
封闭,是指集合 V V V中可以进行向量的加法及数乘两种运算。具体说就是:若 a ∈ V , b ∈ V a\in{V},b\in{V} aV,bV,则 a + b ∈ V a+b\in{V} a+bV;若 a ∈ V , λ ∈ R − a\in{V},\lambda\in{\mathbb{R-}} aV,λR,则 λ a ∈ V \lambda a\in{V} λaV

  • n n n元齐次线性方程组的解集: S = { x ∣ A x = 0 } S=\{x|Ax=0\} S={xAx=0}是一个向量空间(称为其次线性方程组的解空间)。
  • 非齐次线性方程组的解集 S = { x ∣ A x = b } S=\{x|Ax=b\} S={xAx=b}不是向量空间。
  • 一般地,由向量组 a 1 , a 2 , . . . , a m a_1,a_2,...,a_m a1,a2,...,am所生成的向量空间为: L = { x = λ 1 a 1 + λ 2 a 2 + . . . + λ m a m ∣ λ 1 , λ 2 , . . . , λ m ∈ R } L=\{x=\lambda_1a_1+\lambda_2a_2+...+\lambda_ma_m|\lambda_1,\lambda_2,...,\lambda_m\in\mathbb{R}\} L={x=λ1a1+λ2a2+...+λmamλ1,λ2,...,λmR}

定义2:设有向量空间 V 1 , V 2 V_1,V_2 V1,V2,若 V 1 ⊆ V 2 V_1\subseteq{V_2} V1V2,就称 V 1 V_1 V1 V 2 V_2 V2的子空间。

定义3:设 V V V为向量空间,如果 r r r个向量 a 1 , a 2 , . . . , a r ∈ V a_1,a_2,...,a_r\in{V} a1,a2,...,arV,且满足:(1) a 1 , a 2 , . . . , a r a_1,a_2,...,a_r a1,a2,...,ar线性无关;(2) V V V中任一向量都可由 a 1 , a 2 , . . . , a r a_1,a_2,...,a_r a1,a2,...,ar线性表示,
那么,向量组 a 1 , a 2 , . . . , a r a_1,a_2,...,a_r a1,a2,...,ar就称为向量空间 V V V一个基 r r r称为向量空间 V V V维数,并称 V V V r r r维向量空间

  • 若向量空间 V V V没有基,那么 V V V的维数为0,0维向量空间只含有一个零向量 0 0 0
  • 若把向量空间 V V V看作向量组, V V V的基就是向量组的最大无关组, V V V的维数就是向量组的秩。

定义4:若在向量空间 V V V中取定一个基 a 1 , a 2 , . . . , a r a_1,a_2,...,a_r a1,a2,...,ar,那么 V V V中任一向量 x x x可惟一地表示为 x = λ 1 a 1 + λ 2 a 2 + . . . + λ r a r x=\lambda_1a_1+\lambda_2a_2+...+\lambda_ra_r x=λ1a1+λ2a2+...+λrar数组 λ 1 , λ 2 , . . . , λ r \lambda_1,\lambda_2,...,\lambda_r λ1,λ2,...,λr称为向量 x x x在基 a 1 , a 2 , . . . , a r a_1,a_2,...,a_r a1,a2,...,ar中的坐标

2.5 相似矩阵及二次型

向量的內积、长度及正交性

定义1:设有 n n n维向量 x = ( x 1 x 2 ⋮ x n ) , y = ( y 1 y 2 ⋮ y n ) \textbf{x}=\begin{pmatrix}x_1\\x_2\\\vdots\\x_n\end{pmatrix},\textbf{y}=\begin{pmatrix}y_1\\y_2\\\vdots\\y_n\end{pmatrix} x=x1x2xny=y1y2yn [ x,y ] = x 1 y 1 + x 2 y 2 + . . . + x n y n [\textbf{x,y}]=x_1y_1+x_2y_2+...+x_ny_n [x,y]=x1y1+x2y2+...+xnyn [ x,y ] [\textbf{x,y}] [x,y]称为向量 x x x y y y的內积,结果是一个实数,当 x \textbf{x} x y \textbf{y} y都是列向量时,有 [ x,y ] = x T y [\textbf{x,y}]=\textbf{x}^T\textbf{y} [x,y]=xTy
內积性质:

  • [ x,y ] = [ y,x ] [\textbf{x,y}]=[\textbf{y,x}] [x,y]=[y,x]
  • [ λ x,y ] = λ [ x,y ] [λ\textbf{x,y}]=λ[\textbf{x,y}] [λx,y]=λ[x,y]
  • [ x+y,z ] = [ x,z ] + [ y,z ] [\textbf{x+y,z}]=[\textbf{x,z}]+[\textbf{y,z}] [x+y,z]=[x,z]+[y,z]
  • x=0 \textbf{x=0} x=0时, [ x,x ] = 0 [\textbf{x,x}]=0 [x,x]=0;当 x ≠ 0 \textbf{x}\neq0 x=0时, [ x,x ] > 0 [\textbf{x,x}]>0 [x,x]>0
  • 施瓦茨(Schwarz)不等式: [ x,y ] 2 ≤ [ x,x ] [ y,y ] [\textbf{x,y}]^2≤[\textbf{x,x}][\textbf{y,y}] [x,y]2[x,x][y,y]

定义2:令 ∣ ∣ x ∣ ∣ = [ x,x ] = x 1 2 + x 2 2 + . . . + x n 2 ||\textbf{x}||=\sqrt{[\textbf{x,x}]}=\sqrt{x_1^2+x_2^2+...+x_n^2} x=[x,x] =x12+x22+...+xn2 ∣ ∣ x ∣ ∣ ||\textbf{x}|| x称为 n n n维向量 x \textbf{x} x的长度(或范数)。

  • 非负性 当 x ≠ 0 \textbf{x}≠\textbf{0} x=0时, ∣ ∣ x ∣ ∣ > 0 ||\textbf{x}||>0 x>0;当 x = 0 \textbf{x}=\textbf{0} x=0时, ∣ ∣ x ∣ ∣ = 0 ||\textbf{x}||=0 x=0
  • 齐次性 当 ∣ ∣ λ x ∣ ∣ = ∣ λ ∣   ∣ ∣ x ∣ ∣ ||λ\textbf{x}||=|λ|\,||\textbf{x}|| λx=λx
  • x = 1 \textbf{x}=1 x=1时,称 x \textbf{x} x单位向量。把非零向量除以范数得到单位向量,称为向量单位化。
  • 由施瓦茨不等式, ∣ ∣ x ∣ ∣   ∣ ∣ y ∣ ∣ ≠ 0 ||\textbf{x}||\,||\textbf{y}||≠0 xy=0时,有 − 1 ≤ [ x,y ] ∣ ∣ x ∣ ∣   ∣ ∣ y ∣ ∣ ≤ 1 -1≤\frac{[\textbf{x,y}]}{||\textbf{x}||\,||\textbf{y}||}≤1 1xy[x,y]1于是当 x ≠ 0 , x ≠ 0 \textbf{x}≠\textbf{0},\textbf{x}≠\textbf{0} x=0,x=0时, θ = a r c c o s [ x,y ] ∣ ∣ x ∣ ∣   ∣ ∣ y ∣ ∣ \theta=arccos\frac{[\textbf{x,y}]}{||\textbf{x}||\,||\textbf{y}||} θ=arccosxy[x,y]称为 n n n维向量 x , y \textbf{x},\textbf{y} x,y夹角
  • [ x,y ] = 0 [\textbf{x,y}]=0 [x,y]=0时,称向量 x \textbf{x} x y \textbf{y} y正交,显然,零向量与任何向量都正交。

定理1:若 n n n维向量 a 1 , a 2 , . . . , a r a_1,a_2,...,a_r a1,a2,...,ar是一组两两正交的非零向量,则 a 1 , a 2 , . . . , a r a_1,a_2,...,a_r a1,a2,...,ar线性无关。

定义3:设 n n n维向量 e 1 , e 2 , . . . , e r e_1,e_2,...,e_r e1,e2,...,er是向量空间 V ( V ⊆ R n ) V(V\subseteq{\mathbb{R}^n}) V(VRn)的一个基,如果 e 1 , . . . , e r e_1,...,e_r e1,...,er两两正交,且都是单位向量,则称 e 1 , . . . , e r e_1,...,e_r e1,...,er V V V的一个标准正交基

  • 将基标准正交化可采用施密特(Schmidt)正交化,这里不赘述。

定义4:如果 n n n阶矩阵 A A A满足 A T A = E ( 即 A − 1 = A T ) A^TA=E(即A^{-1}=A^T) ATA=E(A1=AT),称 A A A正交矩阵,简称正交阵。

定义5:若 P P P为正交矩阵,则线性变换 y = P x y=Px y=Px称为正交变换。 ∣ ∣ y ∣ ∣ = ∣ ∣ x ∣ ∣ ||y||=||x|| y=x,正交变换线段长度保持不变。

方阵的特征值与特征向量

定义1:设 A A A n n n阶矩阵,如果数 λ λ λ n n n维非零列向量 x x x使关系式 A x = λ x Ax=λx Ax=λx成立,那么 λ λ λ称为矩阵 A A A特征值,非零向量 x x x称为 A A A的对应于特征值 λ λ λ特征向量。上式也可写成 ( A − λ E ) x = 0 (A-λE)x=0 (AλE)x=0它有非零解的充要条件为: ∣ A − λ E ∣ = 0 |A-λE|=0 AλE=0,即 ∣ a 11 − λ a 12 ⋯ a 1 n a 21 a 22 − λ ⋯ a 2 n ⋮ ⋮ ⋮ a n 1 a n 2 ⋯ a n n − λ ∣ \begin{vmatrix}a_{11}-λ&a_{12}&\cdots&a_{1n}\\a_{21}&a_{22}-λ&\cdots&a_{2n}\\\vdots&\vdots&&\vdots\\a_{n1}&a_{n2}&\cdots&a_{nn}-λ\end{vmatrix} a11λa21an1a12a22λan2a1na2nannλ称为矩阵 A A A特征方程,其左端 ∣ A − λ E ∣ |A-λE| AλE λ λ λ n n n次多项式,记作 f ( λ ) f(λ) f(λ),称为矩阵 A A A特征多项式 A A A的特征值就是特征方程的解。

定理1:设 λ 1 , λ 2 , . . . , λ m λ_1,λ_2,...,λ_m λ1,λ2,...,λm是方阵 A A A m m m个特征值, p 1 , p 2 , . . . , p m p_1,p_2,...,p_m p1,p2,...,pm依次是与之对应的特征向量,如果 λ 1 , λ 2 , . . . , λ m λ_1,λ_2,...,λ_m λ1,λ2,...,λm各不相等,则 p 1 , p 2 , . . . , p m p_1,p_2,...,p_m p1,p2,...,pm线性无关。
推论:设 λ 1 , λ 2 λ_1,λ_2 λ1,λ2是方阵 A A A的两个不同特征值, ξ 1 , ξ 2 , . . . , ξ s \xi_1,\xi_2,...,\xi_s ξ1,ξ2,...,ξs η 1 , η 2 , . . . , η t \eta_1,\eta_2,...,\eta_t η1,η2,...,ηt分别是对应于 λ 1 λ_1 λ1 λ 2 λ_2 λ2的线性无关特征向量,则 ξ 1 , ξ 2 , . . . , ξ s \xi_1,\xi_2,...,\xi_s ξ1,ξ2,...,ξs η 1 , η 2 , . . . , η t \eta_1,\eta_2,...,\eta_t η1,η2,...,ηt线性无关。

相似矩阵

定义1:设 A , B A,B A,B都是 n n n阶矩阵,若有可逆矩阵 P P P,使 P − 1 A P = B P^{-1}AP=B P1AP=B则称 B B B A A A的相似矩阵,或 A A A B B B相似。 P P P称为把 A A A变换成 B B B的相似变换矩阵。

  • 定理1:若 n n n阶矩阵 A A A B B B相似,则 A A A B B B的特征多项式相同,特征值也相同。
    推论:若 n n n阶矩阵 A A A与对角矩阵 Λ = ( λ 1 λ 2 ⋱ λ n ) \Lambda=\begin{pmatrix}λ_1&&&\\&λ_2&&\\&&\ddots&\\&&&λ_n\end{pmatrix} Λ=λ1λ2λn相似,则 λ 1 , λ 2 , . . . , λ n λ_1,λ_2,...,λ_n λ1,λ2,...,λn即是 A A A n n n个特征值。
  • n n n阶矩阵 A A A,寻求相似变换矩阵 P P P,使 P − 1 A P = Λ P^{-1}AP=\Lambda P1AP=Λ为对角矩阵,称为把矩阵 A A A对角化。

定理1: n n n阶矩阵 A A A与对角矩阵相似(即 A A A能对角化)    ⟺    \iff A A A n n n个线性无关的特征向量。

  • 推论:如果 n n n阶矩阵 A A A n n n个特征值互不相等,则 A A A与对角矩阵相似。
对称矩阵的对角化

性质1:对称矩阵的特征值为实数
性质2:设 λ 1 , λ 2 λ_1,λ_2 λ1,λ2是对称矩阵 A A A的两个特征值, p 1 , p 2 p_1,p_2 p1,p2是对应的特征向量。若 λ 1 ≠ λ 2 λ_1≠λ_2 λ1=λ2,则 p 1 p_1 p1 p 2 p_2 p2正交。

定理1:设 A A A n n n阶对称矩阵,则必有正交矩阵 P P P,使 P − 1 A P = P T A P = Λ P^{-1}AP=P^TAP=\Lambda P1AP=PTAP=Λ,其中 Λ \Lambda Λ是以 A A A n n n个特征值为对角元的对角矩阵。
推论:设 A A A n n n阶对称矩阵, λ λ λ A A A的特征方程的 k k k重根,则矩阵 A − λ E A-λE AλE的秩 R ( A − λ E ) = n − k R(A-λE)=n-k R(AλE)=nk,从而对应特征值 λ λ λ恰有 k k k个线性无关的特征向量。

二次型及其标准形

定义1:含有 n n n个变量 x 1 , x 2 , . . . , x n x_1,x_2,...,x_n x1,x2,...,xn的二次齐次函数 f ( x 1 , x 2 , . . . , x n ) = a 11 x 1 2 + a 22 x 2 2 + . . . + a n n x n 2 + 2 a 12 x 1 x 2 + 2 a 13 x 1 x 3 + . . . + 2 a n − 1 , n x n − 1 x n \begin{aligned}f(x_1,x_2,...,x_n)=a_{11}x_1^2+a_{22}x_2^2+...+a_{nn}x_n^2+\\2a_{12}x_1x_2+2a_{13}x_1x_3+...+2a_{n-1,n}x_{n-1}x_n\end{aligned} f(x1,x2,...,xn)=a11x12+a22x22+...+annxn2+2a12x1x2+2a13x1x3+...+2an1,nxn1xn称为二次型

  • 对于二次型,主要寻求可逆线性变换,使二次型只含平方项, f = k 1 y 1 2 + k 2 y 2 2 + . . . + k n y n 2 f=k_1y_1^2+k_2y_2^2+...+k_ny_n^2 f=k1y12+k2y22+...+knyn2称为二次型的标准型(或法式)。
  • 若标准型的系数 k 1 , k 2 , . . . , k n k_1,k_2,...,k_n k1,k2,...,kn只在1,-1,0三个数中取值,则称为二次型规范型
  • 二次型可用矩阵记作: f = x T A x f=x^TAx f=xTAx A A A为对称阵,把 A A A叫做二次型 f f f的矩阵,也把 f f f叫做对称矩阵 A A A的二次型。对称矩阵 A A A的秩叫做二次型 f f f的秩。

定义2:设 A A A B B B n n n阶矩阵,若有可逆矩阵 C C C,使 B = C T A C B=C^TAC B=CTAC,则称矩阵 A A A B B B合同

  • A A A为对称矩阵,则 B B B也为对称矩阵,且 R ( B ) = R ( A ) R(B)=R(A) R(B)=R(A)

定理1:任给二次型 f = ∑ i , j = 1 n a i j x i x j   ( a i j = a j i ) f=\sum_{i,j=1}^na_{ij}x_ix_j\,(a_{ij}=a_{ji}) f=i,j=1naijxixj(aij=aji),总有正交变换 x = P y x=Py x=Py,使 f f f化为标准型 f = λ 1 y 1 2 + λ 2 y 2 2 + . . . + λ n y n 2 f=λ_1y_1^2+λ_2y_2^2+...+λ_ny_n^2 f=λ1y12+λ2y22+...+λnyn2其中 λ 1 , λ 2 , . . . , λ n λ_1,λ_2,...,λ_n λ1,λ2,...,λn f f f的矩阵 A = ( a i j ) A=(a_{ij}) A=(aij)的特征值。

  • 任给 n n n元二次型 f ( x ) = x T A x   ( A T = A ) f(x)=x^TAx\,(A^T=A) f(x)=xTAx(AT=A),总有可逆变换 x = C z x=Cz x=Cz,使 f ( C z ) f(Cz) f(Cz)为规范型。
正定二次型

定理1:设二次型 f = x T A x 的 秩 为 r f=x^TAx的秩为r f=xTAxr,且有两个可逆变换 x = C y x=Cy x=Cy x = P z x=Pz x=Pz使 f = k 1 y 1 2 + k 2 y 2 2 + . . . + k r y r 2    ( k r ≠ 0 ) f=k_1y_1^2+k_2y_2^2+...+k_ry_r^2\,\,(k_r≠0) f=k1y12+k2y22+...+kryr2(kr=0) f = λ 1 z 1 2 + λ 2 z 2 2 + . . . + λ r z r 2    ( λ i ≠ 0 ) f=λ_1z_1^2+λ_2z_2^2+...+λ_rz_r^2\,\,(λ_i≠0) f=λ1z12+λ2z22+...+λrzr2(λi=0) k 1 , . . . , k r k_1,...,k_r k1,...,kr中的正数个数与 λ 1 , . . . , λ r λ_1,...,λ_r λ1,...,λr中正数个数相等。称为惯性定理

  • 二次型中的正系数个数称为二次型的正惯性系数,负系数个数称为负惯性系数。

定义1:设二次型 f ( x ) = x T A x f(x)=x^TAx f(x)=xTAx,如果对任何 x ≠ 0 x≠0 x=0,都有 f ( x ) > 0 f(x)>0 f(x)>0(显然 f ( 0 ) = 0 f(0)=0 f(0)=0),则称 f f f正定二次型,并称对称矩阵 A A A是正定的,如果 f ( x ) < 0 f(x)<0 f(x)<0,则称为负定二次型,对称矩阵 A A A是负定的。

定理2: n n n元二次型 f = x T A x f=x^TAx f=xTAx正定    ⟺    \iff 它的标准型的 n n n个系数全为正,即它的规范型的 n n n个系数全为1.即它的正惯性系数等于 n n n

  • 推论:对称矩阵 A A A为正定的充要条件是: A A A的特征值全为正。

定理3:对称矩阵 A A A为正定的充要条件是: A A A的各阶主子式都为正,即
a 11 > 0 , ∣ a 11 a 12 a 21 a 22 ∣ > 0 , ∣ a 11 ⋯ a 1 n ⋮ ⋮ a n 1 ⋯ a n n ∣ > 0 a_{11}>0,\begin{vmatrix}a_{11}&a_{12}\\a_{21}&a_{22}\end{vmatrix}>0,\begin{vmatrix}a_{11}&\cdots&a_{1n}\\\vdots&&\vdots\\a_{n1}&\cdots&a_{nn}\end{vmatrix}>0 a11>0,a11a21a12a22>0,a11an1a1nann>0对称矩阵 A A A负定的充要条件是:奇数阶主子式为负,而偶数阶主子式为正,即 ( − 1 ) r ∣ a 11 ⋯ a 1 r ⋮ ⋮ a r 1 ⋯ a r r ∣ > 0    ( r = 1 , 2 , . . . , n ) (-1)^r\begin{vmatrix}a_{11}&\cdots&a_{1r}\\\vdots&&\vdots\\a_{r1}&\cdots&a_{rr}\end{vmatrix}>0\,\,(r=1,2,...,n) (1)ra11ar1a1rarr>0(r=1,2,...,n)该定理称为赫尔维茨定理。

  • 2
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

远方的河岸

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值