二次型

定义

含有 n n 个变量x1,x2,,xn二次齐次函数

f(x1,x2,,xn)=a11x21+a22x22++annx2n+2a12x1x2+2a13x1x3++2an1,nxn1xn(1) (1) f ( x 1 , x 2 , ⋯ , x n ) = a 11 x 1 2 + a 22 x 2 2 + ⋯ + a n n x n 2 + 2 a 12 x 1 x 2 + 2 a 13 x 1 x 3 + ⋯ + 2 a n − 1 , n x n − 1 x n

称为 二次型

所以二次型是二次齐次函数


j>i j > i ,取 aij=aji a i j = a j i 2aijxixj=aijxixj+ajixjxi 2 a i j x i x j = a i j x i x j + a j i x j x i 于是 (1) ( 1 ) 可以改写为

f=a11x21+a12x1x2++a1nx1xn+a21x2x1+a22x22++a2nx2xn++an1xnx1+an2xnx2++annx2n=i,j=1naijxixj(2) (2) f = a 11 x 1 2 + a 12 x 1 x 2 + ⋯ + a 1 n x 1 x n + a 21 x 2 x 1 + a 22 x 2 2 + ⋯ + a 2 n x 2 x n + ⋯ + a n 1 x n x 1 + a n 2 x n x 2 + ⋯ + a n n x n 2 = ∑ i , j = 1 n a i j x i x j

标准形(法式)

可逆线性变换使得二次型只有平方项

x1=x1=x1=c11y1+c12y2++c1nync11y1+c12y2++c1nync11y1+c12y2++c1nyn(3) (3) { x 1 = c 11 y 1 + c 12 y 2 + ⋯ + c 1 n y n x 1 = c 11 y 1 + c 12 y 2 + ⋯ + c 1 n y n ⋯ ⋯ x 1 = c 11 y 1 + c 12 y 2 + ⋯ + c 1 n y n

也就是:
x=Cy x = C y

(3) ( 3 ) 代入 (1) ( 1 ) 式,能使
f=k1y21+k2y22++kny2n f = k 1 y 1 2 + k 2 y 2 2 + ⋯ + k n y n 2

也就是:
f=xTAx=(Cy)TA(Cy)=yTCTACy f = x T A x = ( C y ) T A ( C y ) = y T C T A C y

这种只有平方项的二次型,称为二次型的标准型(或法式)
如果标准型中的系数 k1,k2,,kn k 1 , k 2 , ⋯ , k n 只在 1,1,0 1 , − 1 , 0 三个数中取值,也就是用 (3) ( 3 ) 代入 (1) ( 1 ) 式,能使得:

f=y21++y2py2p+1y2r f = y 1 2 + ⋯ + y p 2 − y p + 1 2 − ⋯ − y r 2

则上式称为二次型的规范型
aij a i j 为复数的时候, f f 称为复二次型,当aij为实数的时候, f f 称为实二次型
二次型的矩阵表示

A=(a11a12a1na21a22a2nan1an2ann),x=(x1x2xn)

其中 A A 对称矩阵
于是二次型可以写成
f=xTAx

A A 称为二次型f的矩阵
f f 称为对称矩阵A的二次型
对称矩阵的秩称为二次型f的秩

定理:
任给二次型 f=ni,j=1aijxixj(aij=aji) f = ∑ i , j = 1 n a i j x i x j ( a i j = a j i ) ,总有正交变换 x=Py x = P y ,使 f f 化为标准形:

f=λ1y12+λ2y22++λnyn2

其中 λ1,λ2,,λn λ 1 , λ 2 , ⋯ , λ n f f 的矩阵A=(aij)的特征值。
推论:任给 n n 元二次型f(x)=xTAx(AT=A),总有可逆变换 x=Cz x = C z 使得 f(Cx) f ( C x )


正定二次型

定理:
设 二次型 f(x)=xTAx f ( x ) = x T A x 的秩是 r r ,且有两个可逆变换

x=Cyx=Py

使得:

f=λ1y21+λ2y22++λry2r(ki0) f = λ 1 y 1 2 + λ 2 y 2 2 + ⋯ + λ r y r 2 ( k i ≠ 0 )

f=λ1z21+λ2z22++λrz2r(λi0) f = λ 1 z 1 2 + λ 2 z 2 2 + ⋯ + λ r z r 2 ( λ i ≠ 0 )

k1,k2,,kr k 1 , k 2 , ⋯ , k r 中正数的个数与 λ1,λ2,,λr λ 1 , λ 2 , ⋯ , λ r 中正数的个数相同,这个定理称为 惯性定理
二次型的标准型中正系数的个数称为二次型的 正惯性指数,负数的个数称为 负惯性指数
若二次型 f f 的正惯性指数为p,秩为 r r ,则f的规范形便可确定为
f=y21++y2py2p+1y2r f = y 1 2 + ⋯ + y p 2 − y p + 1 2 − ⋯ − y r 2

定义:
x x Rn R n 中取遍所有 非零向量,一个二次型 f(x)=xTAx f ( x ) = x T A x 仅取一个符号,则称其为 定的(definite)
若对 Rn R n 中的所有非零 x x xTAx>0 x T A x > 0 ,则称该二次型为 正定的(positive definite);
若对 Rn R n 中的所有非零 x x xTAx<0 x T A x < 0 ,则称该二次型为 负定的(negative definite);

x x Rn R n 中取遍所有非零向量,一个二次型 f(x)=xTAx f ( x ) = x T A x 取不同符号,则称其为不定的(definite)
若对 Rn R n 中的所有非零 x x xTAx0 x T A x ≥ 0 ,则称该二次型为半正定的(positive semidefinite);
若对 Rn R n 中的所有非零 x x xTAx0 x T A x ≤ 0 ,则称该二次型为半负定的(negative semidefinite);

二次型的正定或者负定依赖于矩阵 A A ,若二次型是正定的,我们简称A为正定的
定义:一个实对称矩阵 A A 称为
(1)正定的,若对 Rn R n 中的所有非零 x x , xTAx>0 x T A x > 0
(2) ( 2 ) 负定的,若对 Rn R n 中的所有非零 x x , xTAx<0 x T A x < 0
(3) ( 3 ) 半正定的,若对 Rn R n 中的所有非零 x x , xTAx0 x T A x ≥ 0
(4) ( 4 ) 半负定的,若对 Rn R n 中的所有非零 x x , xTAx0 x T A x ≤ 0

对称矩阵 A A 正定充分必要条件

(1) A A 的特征值全为正
(2) A A 的各阶主子式都为正,即:

a11>0,|a11a12a11a12|>0,,|a11a1nan1ann|>0

对称矩阵 A A 负定的充分必要条件(赫尔维茨定理):
奇阶主子式为负,而偶数阶主子式为正,即:
(1)r|a11a1nan1ann|>0(r=1,2,,n).

(3) ( 3 ) 对任意 x0 x ≠ 0 ,有 xTAx>0 x T A x > 0 (定义)
(4) ( 4 ) f f 的正惯性指数p=n
(5) ( 5 ) 存在可逆矩阵 D D ,使得A=DTD
(6) ( 6 ) AE A ≃ E


对称矩阵 A A 正定必要条件
(1) aii>0(i=1,2,,n) a i i > 0 ( i = 1 , 2 , ⋯ , n )
(2) ( 2 ) |A|>0 | A | > 0


矩阵合同的定义与性质

可逆线性变换使得二次型只有平方项

x1=x1=x1=c11y1+c12y2++c1nync11y1+c12y2++c1nync11y1+c12y2++c1nyn(3) (3) { x 1 = c 11 y 1 + c 12 y 2 + ⋯ + c 1 n y n x 1 = c 11 y 1 + c 12 y 2 + ⋯ + c 1 n y n ⋯ ⋯ x 1 = c 11 y 1 + c 12 y 2 + ⋯ + c 1 n y n

也就是:
x=Cy x = C y

(3) ( 3 ) 代入 (1) ( 1 ) 式,能使
f=k1y21+k2y22++kny2n f = k 1 y 1 2 + k 2 y 2 2 + ⋯ + k n y n 2

也就是:
f=xTAx=(Cy)TA(Cy)=yTCTACy f = x T A x = ( C y ) T A ( C y ) = y T C T A C y

B=CTAC B = C T A C


B=CTAC B = C T A C

假设 A,B A , B n n 阶实对称矩阵,若存在可逆矩阵C,使得
CTAC=B C T A C = B

则称 A A B合同,记做 AB A ≃ B ,此时称 f(x) f ( x ) g(y) g ( y ) 为合同二次型。

定理:

对于任意的对称矩阵 A A ,总有正交矩阵x=Py,使得 f f 化为标准型:

f=λ1y12+λ2y22++λnyn2

其中 λ1,λ2,,λn λ 1 , λ 2 , ⋯ , λ n f f 的矩阵A=(aij)的特征值。

  • 0
    点赞
  • 7
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值