为什么正定矩阵等于转置_浅谈矩阵的相似对角化(三)

27d413fa5513b55c5261212439111677.png
森屿瑾年:浅谈线性变换和矩阵之间的关系​zhuanlan.zhihu.com
ff99f9898ab12d93596234b4cdbc7e61.png
森屿瑾年:浅谈矩阵的相似对角化(一)​zhuanlan.zhihu.com
211369941ac65cd92f7be9b21fd183a5.png
森屿瑾年:浅谈矩阵的相似对角化(二)​zhuanlan.zhihu.com
c29b3cb636af9eaa6f3d2c9dca3abbd8.png

在上一篇文章中,我们一起讨论了实对称矩阵的一些性质,并由这些性质给出了二次型标准化的一般过程,在本篇文章中我们继续讨论关于二次型的一些基本问题。

对于任意一个实数域上的二次型,我们都可以表示成

,其中
是一个实对称矩阵。由实对称矩阵的性质可知,实对称矩阵
都可以用一个正交矩阵
进行相似对角化,即化二次型
,对应的线性替换为
,其中
为正交矩阵,即
,这种方法可以将任何一个二次型化为标准型形,所以它是二次型化标准形的通法,但是化二次型为标准形的方法并不唯一,还有配方法也可以将二次型化为标准形。

配方法的实质是将二次型通过添加项构成平方和的形式,在对平方的括号内的变量进行线性替换,进而化成标准形。

例:二次型

可令

得到标准形

若令

则得到标准形

这个例子表明二次型的标准型是不唯一的,但是例子中使用的这两种线性替换得到的标准形中项的个数,系数为正的项个数以及系数为负的项的个数却是一样的。

这并不是偶然的,之所以标准形中项的个数是一样的是因为合同矩阵的秩是一样的,在进行线性替换的过程就是在寻找可逆矩阵

,使得
为对角矩阵,由初等变换不改变矩阵的秩知,对角阵
与原来的实对称矩阵
的秩是相同的,故无论采用那种方式化成标准型,其项的个数都等于原来的对称矩阵
的秩,因此标准形中项的个数是一样的。

而二次型的标准型中正系数的项的个数和负系数的项的个数相等可以叙述为一条定理,称之为惯性定理

惯性定理:实二次型的任意两个标准形中,正系数的个数相等的,故负系数的个数也是相等的。

这个定理我们不予证明,直接当做结论去使用即可。

我们称二次型的标准形中,正系数的个数为二次型的正惯性指数,记作

,负系数的的个数称为二次型的
负惯性指数,它的值为
,其中
为二次型的秩。

二次型的标准形虽然形式上不唯一,但是它却记录了二次型最为关键的一些因素,从它的项的个数可以知道二次型的秩,从它正系数的项的个数可以知道二次型的正惯性指数,从它负系数的项的个数可以知道二次型的负惯性指数,可以说二次型的标准形能够准确反映出二次型的重要信息。

由二次型的标准形的共性可以知道,要是将二次型的标准形的每一项的系数都化成

的话二次型的形式就唯一确定下来了,这相当于对二次型的标准形再进行一个线性替换,替换的本质是将每一项的系数都变成
。这样的二次型的形式我们称之为二次型的规范形,可以知道任何一个二次型的规范形都是唯一的,这个规范形的项的个数为二次型的秩,正平方项的个数为二次型的正惯性指数,负平方项的项的个数为二次型的负惯性系数。

换一种表达形式为实二次型的矩阵都合同于

,其中对角线上1的个数为
,-1的个数为

前面我们所讨论的都是实数域上的二次型,如果二次型

为复数域上的二次型,那么它的规范形的系数一定都是1(复数域上负数也是可以开平方的),因此复二次型的矩阵都合同于
,其中对角线上1的个数为

在引出了二次型的规范形之后,我们可以讨论正定二次型的问题了,正定二次型讨论的是实数域上的二次型,下面给出它的定义。

正定二次型:实二次型

称为正定的,如果对于任何一组不全为0的实数
,都有

显然,二次型

是正定的,因为只有在
的时候,二次型
才为0,其余的任何一组数
带入二次型中,二次型的值均为正的。

二次型

在经过一个非退化的线性替换
之后化为标准形
,二次型的值域是不变的,因此二次型化成标准形或规范形并不影响二次型的正定性,因此我们讨论二次型的正定性只需讨论二次型的标准形即可。

设二次型

化为标准形
后,若二次型的标准形的项的个数
若小于
,则二次型一定是非正定的,因为可取
,二次型的值仍为0,不符合正定二次型的定义,因此在这种情况下二次型为非正定二次型,故我们证明了二次型为正定二次型的一个必要条件,即二次型的秩必须等于n。现在我们研究秩等于n的二次型为正定二次型的条件,在标准形
中,如果其中有一项的系数为负数的话,不妨设第
项的系数
,很容易验证,此时的二次型一定不是正定二次型,因为总可以找到一组
带入二次型中,使得二次型的值为负数,故正定二次型的正惯指数必须等于n。反过来,若二次型的正惯性指数等于n,即二次型的规范形为
,此时对于任意的
带入二次型中,均有二次型为正值,故此时二次型为正定二次型,综上二次型为正定二次型的充分必要条件为二次型的正惯性指数为n。

由正定二次型的正惯性指数为n可以知道,正定二次型的矩阵一定可以合同于单位矩阵

,设正定二次型的矩阵为
,则存在可逆矩阵
,使得
,

对等式两边同时取行列式,有

既有

由于

是可逆矩阵,故
,于是
,即正定二次型的矩阵的行列式为正值。

由于正定二次型的正惯性指数为n,故正定二次型在进行正交相似标准化时化成的标准形的对角矩阵的对角线上面的元素均为正数,这个对角矩阵对角线上的元素即为正定二次型的矩阵的特征值,故正定二次型的矩阵的特征值均为正数。反过来,若二次型

的特征值均为正数,则该二次型矩阵正交相似对角化的对角矩阵的对角线上元素也均为正数,故二次型的标准形中正系数的个数为n,即二次型的正惯性指数为n,即二次型为正定二次型,故二次型的特征值均为正数是二次型为正定二次型的充要条件。

由正定二次型的矩阵的特征值均为正数可知,正定二次型的矩阵的对角线上面的元素均为正数,这是正定二次型的必要条件。

另外,二次型为正定矩阵还有一个充要条件,即二次型矩阵

的各阶顺序主子式都为正,即

另外二次型矩阵

为负定的充分必要条件为:奇数阶顺序主子式为负,偶数阶顺序主子式为正。

这个定理称为赫尔维茨定理,证明过程较为繁琐,当做结论即可。

作为正定二次型的补充内容,还有负定二次型,半正定二次型,半负定二次型以及不定二次型,下面我们给出它们的定义。

是一实二次型,对于任意一组不为0的实数
,如果都有
,那么二次型为
负定二次型;如果都有
,则为
半正定二次型;如果都有
,则为
半负定二次型;如果它既不是半正定又不是半负定,那么称之为 不定二次型

对于半正定二次型

,我们可以得到下列与之等价的结论:

(1)它的正惯性指数等于

;

(2)有可逆矩阵

,使得
,其中
,即
合同于一个对角线上元素均为非负数的对角矩阵;

(3)由(2)知

,即
,由于
是对角线上均为正数的对角矩阵,故
,其中
,故
,即半正定矩阵
可以拆成两个实矩阵
与其转置的乘积,反过来也成立;

(4)

的所有主子式(行指标与列指标相同的子式)皆大于或等于0。

至此,关于浅谈矩阵的相似对角化系列就结束了,欢迎收看本系列的全部内容!

后续更加精彩

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值