【大模型推理】flash-attention_v1

### Jivi-RadX_V1 大模型文档与使用 #### 模型概述 Jivi-RadX_V1 是一款专注于医疗领域的大规模语言模型,旨在提供精准的医学文本处理能力。该模型基于 Eleuther AI 语言模型评估工具构建,并通过 Open Medical LLM Leaderboard 进行性能评测[^1]。 #### 安装环境准备 为了顺利部署和运行 Jivi-RadX_V1,在开始之前需确保已安装必要的依赖库以及配置好开发环境。通常情况下建议采用 Conda 或者虚拟环境来管理 Python 包版本,从而避免不同项目之间的冲突。 ```bash conda create -n radx python=3.8 conda activate radx pip install torch transformers datasets evaluate ``` #### 下载预训练权重 官方提供了多种方式获取预训练好的参数文件,最简便的方法是从 Hugging Face Model Hub 上直接加载: ```python from transformers import AutoModelForCausalLM, AutoTokenizer model_name_or_path = "jivitradx/v1" tokenizer = AutoTokenizer.from_pretrained(model_name_or_path) model = AutoModelForCausalLM.from_pretrained(model_name_or_path) ``` #### 推理接口调用示例 下面给出一段简单的推理代码片段用于测试输入句子得到相应的输出结果: ```python input_text = "患者主诉头痛发热三天..." inputs = tokenizer(input_text, return_tensors="pt") with torch.no_grad(): outputs = model.generate(**inputs) print(tokenizer.decode(outputs[0], skip_special_tokens=True)) ``` #### 高级功能定制化 对于有特殊需求的研究人员来说,还可以进一步调整超参、微调特定任务的数据集或是接入其他第三方插件扩展应用范围。具体操作可以参考 GitHub 仓库中的 `README.md` 文件获得更详细的指导说明。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值