改进YOLOv7系列:26.CVPR2022. ConvNeXt结合YOLOv7 | 基于ConvNeXt结构 构建 CNeB 模块

博客介绍了如何在YOLOv7中结合ConvNeXt结构创建CNeB模块,以提升目标检测性能。通过在YOLOv7中应用CNeB模块,可以在减少参数和计算量的同时实现性能增益。详细步骤包括在common.py文件中添加代码,创建yolov7_CNeB.yaml配置文件,并运行训练脚本。
摘要由CSDN通过智能技术生成
  • 💡统一使用 YOLOv5 代码框架,结合不同模块来构建不同的YOLO目标检测模型。
  • 🌟本项目包含大量的改进方式,降低改进难度,改进点包含【Backbone特征主干】【Neck特征融合】【Head检测头】【注意力机制】【IoU损失函数】【NMS】【Loss计算方式】【自注意力机制】、【数据增强部分】【标签分配策略】、【激活函数】等各个部分。

很多同学用该模块,在自己数据集上涨点

CNeB模块为CSDN芒果汁没有芒果 全网首创

🔥🔥🔥YOLO系列 + ConvNeXt结构 结合应用 为 CSDN芒果汁没有芒果 首发更新博文

1、ConvNeXt理论部分

具体理论部分参考: https://zhuanlan.zhihu.com/p/458016349

评论 26
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果学AI

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值