YOLOv7改进结构系列:最新结合DO-DConv卷积提高性能涨点,打造高性能检测器

该教程介绍如何在YOLOv5系列中应用DO-DConv,通过深度过参数化的卷积层提高检测器性能,同时保持推理阶段的计算复杂度不变。文章详细讲解DO-Conv的基本原理,并提供了代码实现,展示了在YOLOv5模型中的应用步骤。
摘要由CSDN通过智能技术生成
  • 💡该教程包含大量的原创首发改进方式, 所有文章都是原创首发改进内容🚀
    降低改进难度,改进点包含最新最全的Backbone部分、Neck部分、Head部分、注意力机制部分、自注意力机制部分等完整教程🚀
  • 💡本篇文章基于 基于 YOLOv7、YOLOv7-Tiny 、YOLOv5、YOLOv6、YOLOX、YOLOv4 结合 DO-DConv 打造高性能、轻量级检测器 改进。代码直接运行🚀
  • 专栏读者有问题可以私信博主,看到了就会回复.

参数对比(均减少)

标准

Model Summary: 270 layers, 7235389 parameters, 7235389 gradients, 16.6 GFLOPs
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

芒果汁没有芒果

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值