【卷积网络】DO-Conv: Depthwise Over-parameterized Convolutional Layer论文速读笔记

基本信息

论文:https://arxiv.org/pdf/2006.12030.pdf
代码:https://github.com/yangyanli/DO-Conv

核心逻辑

基本卷积操作
上图是卷积核在一个滑动窗口区域上的一次标准卷积操作,注意这里没有滑动的过程,就是一次卷积操作。

其中M和N是卷积核在两个spatial方向上的大小,比如我们一般使用3*3卷积核,那这里就是M=3和N=3,这个图片就是指我们在Cin * 3 * 3的原图P上做了一次卷积操作,得到了1 * Cout的结果。(不过图中显示的是M * N =4,一样的道理)
另两个维度Cin和Cout是输入的维度数和输出的维度数

图中的W是weight的缩写,指卷积核的权重张量;P是patch的缩写,指一次滑动窗口的那一小片区域;O是Output的缩写,指本次卷积操作的输出

如果把W看成两层图的话
把W的第一层跟P对应位置相乘并相加得到O向量的第一个数
把W的第二层跟P对应位置相乘并相加得到O向量的第二个数
在这里插入图片描述
上图是卷积核在一个滑动窗口区域上的一次深度卷积操作,不了解深度卷积的可以去搜索一下。参数跟上边一样,不同的是,这次的卷积操作是:
依然把W看做两层
第一层的黄色区域有M * N 个值,跟P的黄色区域的M * N 个值相乘并相加,得到O的黄色区域的一个值
第二层的黄色区域有M * N 个值,跟P的黄色区域的M * N 个值相乘并相加,得到O的黄色区域的另一个值
以此类推得到蓝色和绿色的各两个值
在这里插入图片描述
作者尝试把标准卷积操作和深度卷积结合到一起,上图是Do-Conv卷积的两种形式
图a是先进行一次深度卷积得到Cin和Dmul,然后紧接着进行标准卷积得到最终的O向量
图b则是把深度卷积核的参数和标准卷积核的参数直接乘到一起,然后再跟原图的输入进行一次标准卷积,也能得到相同的结果
不过这两种方式的计算量不一样
在这里插入图片描述

经过上图对比之后,最终还是选用了图b的方式
作者在训练的时候更新两个卷积核的参数,然后在推理的时候把这些参数先按照图b的形式变成一个标准卷积的参数保存下来,然后根据这个参数进行推理。理论上推理时的计算量跟标准卷积相同,并不会因为增加了一个深度卷积核就变慢
在这里插入图片描述
除了把标准卷积加一个深度卷积操作之外,深度卷积本身也可以加上一层深度卷积
图中的D表示额外加上的深度卷积核,W表示原本的深度卷积核
图a是先用额外的深度卷积核进行深度卷积之后,再经过一次原本的深度卷积
图b是把两个深度卷积核合并起来
这里同样是在训练的时候得到两个深度卷积核的参数,然后在推理的时候把它们合并起来,并不会增加推理时的计算开销

优势

因为训练时多了一次深度卷积,所以理论上可以加快训练,并收敛到更好的参数组合
之后的实验也证明了这一点,加入了一次深度卷积后,尽管推理时参数量没有变化,网络依然得到了更高的分类精度

  • 3
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: ECA-Net是一种用于深度卷积神经网络的高效通道注意力机制,可以提高模型的性能和效率。它通过对每个通道的特征图进行加权,使得网络可以更好地学习到重要的特征。ECA-Net的设计简单,易于实现,并且可以与各种深度卷积神经网络结构相结合使用。 ### 回答2: ECA-Net是一种用于深度卷积神经网络的高效通道注意力机制。 ECA-Net通过提出一种名为"Efficient Channel Attention"(ECA)的注意力机制,来增强深度卷积神经网络的性能。通道注意力是一种用于自适应调整不同通道的特征响应权重的机制,有助于网络更好地理解和利用输入数据的特征表示。 相比于以往的注意力机制,ECA-Net采用了一种高效且可扩展的方式来计算通道注意力。它不需要生成任何中间的注意力映射,而是通过利用自适应全局平均池化运算直接计算出通道注意力权重。这种方法极大地降低了计算和存储开销,使得ECA-Net在实际应用中更具实用性。 在进行通道注意力计算时,ECA-Net引入了两个重要的参数:G和K。其中,G表示每个通道注意力的计算要考虑的特征图的大小;K是用于精细控制计算量和模型性能之间平衡的超参数。 ECA-Net在各种视觉任务中的实验结果表明,在相同的模型结构和计算资源下,它能够显著提升网络的性能。ECA-Net对不同层级的特征表示都有显著的改进,能够更好地捕捉不同特征之间的关联和重要性。 总之,ECA-Net提供了一种高效并且可扩展的通道注意力机制,可以有效提升深度卷积神经网络的性能。它在计算和存储开销上的优势使得它成为一个非常有价值的工具,可在各种计算资源受限的应用中广泛应用。 ### 回答3: "eca-net: efficient channel attention for deep convolutional neural networks" 是一种用于深度卷积神经网络的高效通道注意力模块。这一模块旨在提高网络对不同通道(特征)之间的关联性的理解能力,以提升网络性能。 该方法通过引入了一个新的注意力机制来实现高效的通道注意力。传统的通道注意力机制通常是基于全局池化操作来计算通道之间的关联性,这种方法需要较高的计算成本。而ECA-Net则通过引入一个参数化的卷积核来计算通道之间的关联性,可以显著减少计算量。 具体来说,ECA-Net使用了一维自适应卷积(adaptive convolution)来计算通道注意力。自适应卷积核根据通道特征的统计信息来调整自身的权重,从而自适应地计算每个通道的注意力权重。这样就可以根据每个通道的信息贡献度来调整其权重,提高网络的泛化能力和性能。 ECA-Net在各种图像分类任务中进行了实验证明了其有效性。实验结果显示,ECA-Net在相同计算预算下,相比其他通道注意力方法,可以获得更高的分类精度。同时,ECA-Net还具有较少的额外计算成本和模型大小,使得其在实际应用中更加高效。 总结而言,"eca-net: efficient channel attention for deep convolutional neural networks" 提出了一种高效通道注意力方法,通过引入自适应卷积核来计算通道注意力,从而提高了深度卷积神经网络的性能。这一方法在实验中取得了良好的效果,并且具有较少的计算成本和模型大小。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值