💡本篇内容
:YOLOv5核心改进金字塔结构:新颖尺度序列特征融合结构Scale-sequence-feature-fusion,有效地利用所有金字塔特征图之间的相关性,即插即用提升精度性能
💡🚀🚀🚀本博客 改进源代码改进 适用于 YOLOv5 按步骤操作运行改进后的代码即可
💡本文提出改进 原创
方式:二次创新,YOLOv5专属
Scale-sequence-feature-fusion 论文理论部分 + 原创最新改进 YOLOv5 代码实践改进
文章目录
提出了一种基于注意力量表序列融合的 You Only Look Once (YOLO) 框架,结合了空间和尺度特征,以实现准确和快速的细胞实例分割。基于YOLO分割框架,采用尺度序列特征融合(SSFF)模块增强网络的多尺度信息提取能力,采用三重特征编码器(TPE)模块融合不同尺度的特征图,增加细节信息。我们进一步引入了通道和位置注意力机制 (CPAM) 来集成 SSFF 和 TPE 模块&