图像的拼接

(1)sift算法,主要用于获取图片的特征点。            

    def detectAndDescribe(self, image):
        # 将彩色图片转换成灰度图
        gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)

        # 建立SIFT生成器
        descriptor = cv2.xfeatures2d.SIFT_create()
        # 检测SIFT特征点,并计算描述子

        (kps, features) = descriptor.detectAndCompute(image, None)
        
        # 将结果转换成NumPy数组
        kps = np.float32([kp.pt for kp in kps])

        # 返回特征点集,及对应的描述特征
        return (kps, features)

 kps是一个列表,列表中的元素是keypoint 类,该类有

pt:特征点的坐标(x,y)

angle:特征向量的角度等属性

feature是一个128维的数组。

sift过程简介:

                   (1)构建高斯金字塔,每一层有多张图,为一组,是下层输出通过不同的高斯核得来。越往上,通过降采样来获取新的图

                     (2)构建差分金字塔,没组中的相邻的图相减

                     (3)相邻3层中找出极小值,由于是离散的

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值