二叉树、前序遍历、中序遍历和后序遍历

二叉树、前序遍历、中序遍历和后序遍历

1定义

1.1树的定义及特点

定义:树是由结点或顶点和边组成的(可能是非线性的)且不存在着任何环的一种数据结构。没有结点的树称为空(null或empty)树。一棵非空的树包括一个根结点, 还(很可能)有多个附加结点,所有结点构成一个多级分层结构。
特点:树状图是一种数据结构, 它是由n (n>=0)个有限结点组成一个具有层次关系的集合。把它叫做“树”是因为它看起来像y棵倒挂的树,也就是说它是根朝上,而叶朝下的。它具有以下的特点:

1.2二叉树的定义

二叉树:每个节点最多含有两个子树的树称为二叉树。

1.3二叉树的性质

二叉查找树(英语:Binary Search Tree),也称为 二叉搜索树、有序二叉树(Ordered Binary Tree)或排序二叉树(Sorted Binary Tree),是指一棵空树或者具有下列性质的二叉树:

  1. 若任意节点的左子树不空,则左子树上所有节点的值均小于它的根节点的值;
  2. 若任意节点的右子树不空,则右子树上所有节点的值均大于它的根节点的值;
  3. 任意节点的左、右子树也分别为二叉查找树;
  4. 没有键值相等的节点。
  5. 二叉查找树相比于其他数据结构的优势在于查找、插入的时间复杂度较低。为 O(\log n)O(logn)。二叉查找树是基础性数据结构,用于构建更为抽象的数据结构,如集合、多重集、关联数组等。

2基本概念

术语概念
根节点树的最顶端
子节点远离根节点后的一个节点连接另一个节点
叶子节点没有子节点的结点
两个节点之间的连线
路径节点和边连接路径的序列
层级该节点到根节点的最长路径的边的总和+1
深度该节点到根节点的最长路径的边的总和

3遍历方式

3.1先序遍历

若树为空,则空操作返回。否则,先访问根节点,然后前序遍历左子树,再前序遍历右子树。(W)型(中左右)
在这里插入图片描述

3.1中序遍历

若树为空,则空操作返回。否则,从根节点开始(注意并不是先访问根节点)
,中序遍历根节点的左子树,然后是(访问根节点,最后中序遍历根节点的右子树。(M)型,(左中右)
在这里插入图片描述

3.3后序遍历

若树为空,则空操作返回。否则,从左到右先叶子后节点的方式遍历访问左右子树,最后访问根节点。(左右中)逆时针型(左右 中)
在这里插入图片描述

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值