算法复杂度分析——时间复杂度(下)

本文详细介绍了时间复杂度的四种类型:最好情况时间复杂度、最坏情况时间复杂度、平均情况时间复杂度和均摊时间复杂度。通过实例解释了在不同场景下如何计算这些复杂度,并特别讨论了摊还分析法在处理特定操作序列时如何得到均摊时间复杂度。此外,文章还探讨了在插入操作中如何应用摊还分析以得到O(1)的均摊时间复杂度。
摘要由CSDN通过智能技术生成

目录


最好情况时间复杂度(best case time complexity)、最坏情况时间复杂度(worst case time complexity)、平均情况时间复杂度(average case time complexity)、均摊时间复杂度(amortized time complexity)

最好情况时间复杂度: 在最理想的情况下,执行这段代码的时间复杂度。在最理想的情况下,要查找的变量 x 正好是数组的第一个元素,这个时候对应的时间复杂度就是最好情况时间复杂度。

最坏情况时间复杂度: 在最糟糕的情况下,执行这段代码的时间复杂度。如果数组中没有要查找的变量 x,我们需要把整个数组都遍历一遍才行,所以这种最糟糕情况下对应的时间复杂度就是最坏情况时间复杂度。

平均时间复杂度
要查找的变量 x 在数组中的位置,有 n+1 种情况:在数组的 0~n-1 位置中和不在数组中。我们把每种情况下,查找需要遍历的元素个数累加起来,然后再除以 n+1,就可以得到需要遍历的元素个数的平均值,即:

1 + 2 + 3 + ⋯ + n + n n + 1 = n ( n + 3 ) 2 ( n + 1 ) \frac{1 + 2 + 3 + \cdots + n + n}{n + 1} = \frac{n(n + 3)}{2(n + 1)} n+11+2+3++n+n=2(n+1)n(n+3)

我们知道,时间复杂度的大 O 标记法中,可以省略掉系数、低阶、常量,所以,咱们把刚刚这个公式简化之后,得到的平均时间复杂度就是 O(n)。

加权平均时间复杂度
我们知道,要查找的变量 x,要么在数组里,要么就不在数组里。这两种情况对应的概率统计起来很麻烦,为了方便你理解,我们假设在数组中与不在数组中的概率都为 1/2。另外,要查找的数据出现在 0~n-1 这 n 个位置的概率也是一样的,为 1/n。所以,根据概率乘法法则,要查找的数据出现在 0~n-1 中任意位置的概率就是 1/(2n)。

因此,前面的推导过程中存在的最大问题就是,没有将各种情况发生的概率考虑进去。如果我们把每种情况发生的概率也考虑进去,那平均时间复杂度的计算过程就变成了这样:

1 × 1 2 n + 2 × 1 2 n + ⋯ + n × 1 2 n + n × 1 2 n = 3 n + 1 4 1 \times \frac{1}{2n} +2 \times \frac{1}{2n} + \cdots + n \times \frac{1}{2n} + n \times \frac{1}{2n} = \frac{3n + 1}{4} 1×2n1+2×2n1++n×2n1+n×2n1=43n+1

这个值就是概率论中的加权平均值,也叫作期望值,所以平均时间复杂度的全称应该叫加权平均时间复杂度或者期望时间复杂度。

引入概率之后,前面那段代码的加权平均值为 (3n+1)/4。用大 O 表示法来表示,去掉系数和常量,这段代码的加权平均时间复杂度仍然是 O(n)。

均摊时间复杂度
针对这种特殊的场景,我们引入了一种更加简单的分析方法:摊还分析法,通过摊还分析得到的时间复杂度我们起了一个名字,叫均摊时间复杂度。


 // array表示一个长度为n的数组
 // 代码中的array.length就等于n
 int[] array = new int[n];
 int count = 0;
 
 void insert(int val) {
    if (count == array.length) {
       int sum = 0;
       for (int i = 0; i < array.length; ++i) {
          sum = sum + array[i];
       }
       array[0] = sum;
       count = 1;
    }

    array[count] = val;
    ++count;
 }

那究竟如何使用摊还分析法来分析算法的均摊时间复杂度呢?我们还是继续看在数组中插入数据的这个例子。每一次 O(n) 的插入操作,都会跟着 n-1 次 O(1) 的插入操作,所以把耗时多的那次操作均摊到接下来的 n-1 次耗时少的操作上,均摊下来,这一组连续的操作的均摊时间复杂度就是 O(1)。这就是均摊分析的大致思路。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值