Pytorch学习之十九种损失函数(转载,仅用于参考学习)

损失函数通过torch.nn包实现,

1 基本用法

criterion = LossCriterion() #构造函数有自己的参数
loss = criterion(x, y) #调用标准时也有参数

   
   
  • 1
  • 2

2 损失函数

2-1 L1范数损失 L1Loss

计算 output 和 target 之差的绝对值。

torch.nn.L1Loss(reduction='mean')

   
   
  • 1

参数:

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值; sum:返回loss的和。默认:mean。

2-2 均方误差损失 MSELoss

计算 output 和 target 之差的均方差。

torch.nn.MSELoss(reduction='mean')

   
   
  • 1

参数:

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值; sum:返回loss的和。默认:mean。

2-3 交叉熵损失 CrossEntropyLoss

当训练有 C 个类别的分类问题时很有效. 可选参数 weight 必须是一个1维 Tensor, 权重将被分配给各个类别. 对于不平衡的训练集非常有效。
在多分类任务中,经常采用 softmax 激活函数+交叉熵损失函数,因为交叉熵描述了两个概率分布的差异,然而神经网络输出的是向量,并不是概率分布的形式。所以需要 softmax激活函数将一个向量进行“归一化”成概率分布的形式,再采用交叉熵损失函数计算 loss。
在这里插入图片描述

torch.nn.CrossEntropyLoss(weight=None, ignore_index=-100, reduction='mean')

   
   
  • 1

参数:

weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor
ignore_index (int, optional) – 设置一个目标值, 该目标值会被忽略, 从而不会影响到 输入的梯度。
reduction-三个值,none: 不使用约简;mean:返回loss和的平均值; sum:返回loss的和。默认:mean。

2-4 KL 散度损失 KLDivLoss

计算 input 和 target 之间的 KL 散度。KL 散度可用于衡量不同的连续分布之间的距离, 在连续的输出分布的空间上(离散采样)上进行直接回归时 很有效.

torch.nn.KLDivLoss(reduction='mean')

   
   
  • 1

参数:

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值; sum:返回loss的和。默认:mean。

2-5 二进制交叉熵损失 BCELoss

二分类任务时的交叉熵计算函数。用于测量重构的误差, 例如自动编码机. 注意目标的值 t[i] 的范围为0到1之间.

torch.nn.BCELoss(weight=None, reduction='mean')

   
   
  • 1

参数:

weight (Tensor, optional) – 自定义的每个 batch 元素的 loss 的权重. 必须是一个长度为 “nbatch” 的 的 Tensor
pos_weight(Tensor, optional) – 自定义的每个正样本的 loss 的权重. 必须是一个长度 为 “classes” 的 Tensor

2-6 BCEWithLogitsLoss

BCEWithLogitsLoss损失函数把 Sigmoid 层集成到了 BCELoss 类中. 该版比用一个简单的 Sigmoid 层和 BCELoss 在数值上更稳定, 因为把这两个操作合并为一个层之后, 可以利用 log-sum-exp 的 技巧来实现数值稳定.

torch.nn.BCEWithLogitsLoss(weight=None, reduction='mean', pos_weight=None)

   
   
  • 1

参数:

weight (Tensor, optional) – 自定义的每个 batch 元素的 loss 的权重. 必须是一个长度 为 “nbatch” 的 Tensor
pos_weight(Tensor, optional) – 自定义的每个正样本的 loss 的权重. 必须是一个长度 为 “classes” 的 Tensor

2-7 MarginRankingLoss
torch.nn.MarginRankingLoss(margin=0.0, reduction='mean')

   
   
  • 1

对于 mini-batch(小批量) 中每个实例的损失函数如下:
在这里插入图片描述
参数:

margin:默认值0

2-8 HingeEmbeddingLoss
torch.nn.HingeEmbeddingLoss(margin=1.0,  reduction='mean')

   
   
  • 1

对于 mini-batch(小批量) 中每个实例的损失函数如下:
在这里插入图片描述
参数:

margin:默认值1

2-9 多标签分类损失 MultiLabelMarginLoss
torch.nn.MultiLabelMarginLoss(reduction='mean')

   
   
  • 1

对于mini-batch(小批量) 中的每个样本按如下公式计算损失:
在这里插入图片描述

2-10 平滑版L1损失 SmoothL1Loss

也被称为 Huber 损失函数。

torch.nn.SmoothL1Loss(reduction='mean')

   
   
  • 1

在这里插入图片描述
其中
在这里插入图片描述

2-11 2分类的logistic损失 SoftMarginLoss
torch.nn.SoftMarginLoss(reduction='mean')

   
   
  • 1

**参数:**

2-12 多标签 one-versus-all 损失 MultiLabelSoftMarginLoss
torch.nn.MultiLabelSoftMarginLoss(weight=None, reduction='mean')

   
   
  • 1

**参数:**

2-13 cosine 损失 CosineEmbeddingLoss
torch.nn.CosineEmbeddingLoss(margin=0.0, reduction='mean')

   
   
  • 1

在这里插入图片描述
参数:

margin:默认值0

2-14 多类别分类的hinge损失 MultiMarginLoss
torch.nn.MultiMarginLoss(p=1, margin=1.0, weight=None,  reduction='mean')

   
   
  • 1

在这里插入图片描述
参数:

p=1或者2 默认值:1
margin:默认值1

2-15 三元组损失 TripletMarginLoss
torch.nn.TripletMarginLoss(margin=1.0, p=2.0, eps=1e-06, swap=False, reduction='mean')

   
   
  • 1

在这里插入图片描述
其中:
在这里插入图片描述

2-16 连接时序分类损失 CTCLoss

CTC连接时序分类损失,可以对没有对齐的数据进行自动对齐,主要用在没有事先对齐的序列化数据训练上。比如语音识别、ocr识别等等。

torch.nn.CTCLoss(blank=0, reduction='mean')

   
   
  • 1

参数:

reduction-三个值,none: 不使用约简;mean:返回loss和的平均值; sum:返回loss的和。默认:mean。

2-17 负对数似然损失 NLLLoss

负对数似然损失. 用于训练 C 个类别的分类问题.

torch.nn.NLLLoss(weight=None, ignore_index=-100,  reduction='mean')

   
   
  • 1

参数:

weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor
ignore_index (int, optional) – 设置一个目标值, 该目标值会被忽略, 从而不会影响到 输入的梯度.

2-18 NLLLoss2d

对于图片输入的负对数似然损失. 它计算每个像素的负对数似然损失.

torch.nn.NLLLoss2d(weight=None, ignore_index=-100, reduction='mean')

   
   
  • 1

参数:

weight (Tensor, optional) – 自定义的每个类别的权重. 必须是一个长度为 C 的 Tensor
reduction-三个值,none: 不使用约简;mean:返回loss和的平均值; sum:返回loss的和。默认:mean。

2-19 PoissonNLLLoss

目标值为泊松分布的负对数似然损失

torch.nn.PoissonNLLLoss(log_input=True, full=False,  eps=1e-08,  reduction='mean')

   
   
  • 1

参数:

log_input (bool, optional) – 如果设置为 True , loss 将会按照公 式 exp(input) - target * input 来计算, 如果设置为 False , loss 将会按照 input - target * log(input+eps) 计算.
full (bool, optional) – 是否计算全部的 loss, i. e. 加上 Stirling 近似项 target * log(target) - target + 0.5 * log(2 * pi * target).
eps (float, optional) – 默认值: 1e-8

参考资料

  1. pytorch loss function 总结
  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
PyTorch中,进行多任务学习时常用的损失函数包括交叉熵损失函数和相对熵损失函数。交叉熵损失函数用于分类任务,而相对熵损失函数(也称为KL散度损失函数)则用于衡量两个概率分布之间的差异。 对于多标签分类任务,我们可以使用二进制交叉熵损失函数,即torch.nn.BCELoss。这个损失函数通过将每个标签视为一个二分类问题,来计算每个标签的损失。在PyTorch中,通过将模型的输出与真实标签进行比较,并将结果输入到BCELoss函数中,即可得到多标签分类任务的损失。值得注意的是,BCELoss函数默认是对每个样本的损失进行平均,如果需要对每个样本的损失进行求和,则可以设置参数reduction为'sum'。 除了交叉熵损失函数,相对熵损失函数也是一常用的多任务学习损失函数。KL散度损失函数用于衡量两个概率分布之间的差异,通常用于训练生成模型。在PyTorch中,我们可以使用torch.nn.KLDivLoss函数来计算相对熵损失。这个函数接受两个概率分布作为输入,其中一个是模型的输出概率分布,另一个是真实标签的概率分布。相对熵损失函数默认对每个样本的损失进行平均,如果需要对每个样本的损失进行求和,则可以设置参数reduction为'sum'。 总结起来,对于多任务学习,常用的损失函数包括交叉熵损失函数和相对熵损失函数。交叉熵损失函数用于分类任务,而相对熵损失函数用于衡量两个概率分布之间的差异。在PyTorch中,可以使用torch.nn.BCELoss函数来计算二进制交叉熵损失,使用torch.nn.KLDivLoss函数来计算相对熵损失。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值