地理信息数据处理
文章平均质量分 57
以matlab和python编程为基础,处理地理信息中常见的数据。
木叶清风666
这个作者很懒,什么都没留下…
展开
-
【python地图添加指北针和比例尺】
地理信息绘制中添加指北针和比例尺,使得图像更专业。原创 2024-03-27 19:30:00 · 1305 阅读 · 0 评论 -
【python由站点数据插值到网格数据方法对比】
气象海洋中空间数据类型有站点数据、格点数据。站点数据空间分布不连续,不利于进行时空分析;有时需要将站点数据插值到网格中。本文基于一个散点数据对比了griddata、IDW、krige、rbf的插值结果。插值范围上,除了griddata以外的其它插值方法,都可以插值到站点以外的区域;插值效果上,从本案例的结果上看,我认为反距离权重IDW结果最好,之后为RBF,其次是克里金。原创 2024-03-27 19:00:00 · 3148 阅读 · 3 评论 -
【QGIS基于边界裁剪DEM】
QGIS内置的栅格裁剪工具(如Raster Clipping)操作简便,允许用户使用矢量图层作为裁剪掩膜,灵活定义裁剪区域。基于QGIS对相关数据依据边界进行裁剪,可以更好地进行数据可视化展示。原创 2024-03-26 19:58:48 · 977 阅读 · 0 评论 -
【QGIS作图】
文章目录1、使用QGIS作图1、使用QGIS作图原创 2024-03-25 22:36:14 · 154 阅读 · 0 评论 -
【QGIS从shp文件中筛选目标区域导出为shp】
QGIS利用shp文件提取研究区域shp原创 2024-03-25 19:30:00 · 2831 阅读 · 0 评论 -
【python绘图colorbar对齐】
python在绘图过程中,可能会出现colorbar高度与主图不匹配情况,需要进行调整,使得与主图高度对齐,使图像更美观原创 2024-03-22 21:00:00 · 586 阅读 · 0 评论 -
【pcolor数据可视化】Matlab vs. Python
地理信息数据可视化原创 2024-03-22 20:30:00 · 665 阅读 · 0 评论 -
中国区域地图叠加绘制
matlab中国行政区域信息绘制叠加; 画图固定区域信息标注原创 2023-05-05 17:50:29 · 2102 阅读 · 5 评论 -
【python地理信息绘制入门】cartopy学习
cartopy是一个用于绘制地图投影和地理数据可视化的 Python 库。它是建立在 matplotlib 的基础上,专门用于制作地图和地理数据的图表。cartopy 的目标是使地图制作变得更加简单和直观,同时提供了一些强大的功能来处理地理数据和投影。原创 2023-08-18 11:20:20 · 1850 阅读 · 2 评论 -
【python地理信息绘制入门】cartopy学习—feature
【代码】【python地理信息绘制入门】cartopy学习—feature。原创 2023-08-21 14:27:38 · 254 阅读 · 0 评论 -
Matlab以及Python多图拼接
本文提供了多张图片进行拼接的matlab以及python代码供参考使用。原创 2023-05-30 14:51:55 · 503 阅读 · 0 评论 -
【matlab利用shp文件制作mask白化文件】
地理信息绘图 mask 可以用于突出显示特定地理区域,使其在地图上更加显眼。这可以帮助观察者更快地识别感兴趣的区域。在演示、展示或报告中,地理信息绘图 mask 可以帮助您集中注意力,突出重点,并有效地传达您想要传达的信息。通过将 mask 应用于地图上的特定区域,可以隔离出特定地理区域的数据,从而更深入地进行数据分析和研究。地理信息绘图中的 “mask” 通常指的是遮罩或掩膜,用于在地图或图像上隐藏、高亮或标记特定区域。读取shp文件变量信息。原创 2023-08-21 17:40:56 · 1097 阅读 · 0 评论 -
【python地理信息绘制入门】cartopy学习—contourf
【代码】【python地理信息绘制入门】cartopy学习—contourf。原创 2023-08-23 14:19:54 · 259 阅读 · 0 评论 -
【python利用shp文件进行绘图白化】
python借助shp文件对绘图进行白化,不需要进行mask文件的制作,可以高效地进行区域绘制。原创 2023-08-23 10:31:21 · 1658 阅读 · 0 评论 -
【python绘图—colorbar操作学习】
Colorbar可以显示图中的颜色映射范围,帮助理解图中不同颜色所代表的数据范围。例如,在热力图中,不同的颜色可能表示不同的温度值,颜色条可以告诉哪种颜色对应哪个温度值。Colorbar可以提供关于颜色和数据之间的映射关系的信息。可以通过查看颜色条来了解不同颜色在图中代表的数据值。颜色条可以帮助理解数据的分布情况。例如,颜色条中的颜色分布越均匀,表示数据在整个范围内都有分布。原创 2023-09-14 17:06:07 · 9774 阅读 · 0 评论 -
【python爬取中央气象台每日预报结果】 selenium=4.12.0
中央气象台网站提供了1-7天的各要素预报信息(这里以降水信息为例)。该网站通过气象观测数据和数值模型分析,提供了全国范围内各地区未来几天的降水情况预报。用户可以通过该网站获取准确的降水预报,以便做出相应的气象决策和安排。无论是个人还是专业人士,都可以在中央气象台网站上获取可靠的降水预报信息,以帮助其日常生活或工作中的气象需求。原创 2023-09-17 16:32:22 · 574 阅读 · 0 评论 -
【python爬取中央气象台每日预报结果】 selenium=3.141.0
中央气象台网站提供了1-7天的各要素预报信息(这里以降水信息为例)。该网站通过气象观测数据和数值模型分析,提供了全国范围内各地区未来几天的降水情况预报。用户可以通过该网站获取准确的降水预报,以便做出相应的气象决策和安排。无论是个人还是专业人士,都可以在中央气象台网站上获取可靠的降水预报信息,以帮助其日常生活或工作中的气象需求。原创 2023-06-29 13:55:49 · 877 阅读 · 0 评论 -
ERA5数据下载
等选项,选择自己需要的即可。拉到最下面有一个区域选择,默认是全球的数据,如果想定位到自己想要的区域,比如说中国,可自行进行设置,数据格式一般选择NetCDF即可。根据需要选择数据类型(每个数据集的标题大多已包含数据类型,覆盖范围,时间跨度等,部分数据最早时间为1950年),点进去后,默认的overwiew里会介绍数据集的组成变量以及对数据的介绍等如图2所示。用python下载,同1.中选择你所需要的数据之后,点击Show API request,即可获得下载所需的python代码,复制另存为py文件。原创 2023-04-12 10:39:27 · 1615 阅读 · 1 评论 -
MODIS卫星遥感数据下载处理
MODIS数据下载处理原创 2023-03-09 13:43:53 · 730 阅读 · 0 评论 -
ERA5数据批量下载
ERA5再分析数据的IDM接管下载原创 2023-03-08 17:26:50 · 1450 阅读 · 3 评论 -
数据可视化中的数据映射及colorbar设置
数据可视化中的数据映射以及变colorbar设置原创 2023-03-08 13:09:57 · 813 阅读 · 0 评论 -
气象数据grib/grib2的处理方法汇总
之前接触的数据格式大都是nc格式,使用matlab和python都比较熟悉怎么读取,进行数据处理工作。最近发现气象数据中格式很多采用grib\grib2格式。以下是对grib\grib2格式数据处理进行的总结。原创 2022-06-12 10:20:31 · 20561 阅读 · 15 评论 -
USGS网站中STRM DEM数据批量下载
本文介绍了STRM DEM数据的批量下载方法目录1、USGS网站注册2、下载工具准备3、选取关注区域4、查找、选取、下载数据1、USGS网站注册打开 https://earthexplorer.usgs.gov/网站,点击左上角login注册/登录网站2、下载工具准备批量下载需要官方提供的BDA工具https://dds.cr.usgs.gov/bulk,使用该工具需要相应的java环境。3、选取关注区域上述工作完成后,就可以进行关注区域的数据选取原创 2022-04-22 16:06:45 · 6478 阅读 · 17 评论 -
Matlab多张图片合成gif
1、将工作路径切换到图片所在文件夹2、运行以下代码代码循环体中,循环次数为图片数clear;clc;nFrames=32;mov(1:nFrames) = struct('cdata', [],'colormap', []);namell=dir([ '*' '.png']);%读取需要合并的图片名字 '*' '.png'表示读取文件夹中任意字段+.png格式的图片set(gcf,'color',[1 1 1]);%背景为白色for i=1:12 Img=imre...原创 2022-05-26 18:07:05 · 5153 阅读 · 13 评论 -
地理数据中的分辨率转换
气象海洋在进行相关工作时,常常需要对数据分辨率进行调整,以适应自己研究的问题.本文提高了数据高低分辨率的相互转换的matlab以及python方法,供需要者参考原创 2023-03-08 11:08:46 · 1467 阅读 · 0 评论