基于图神经网络强化学习解决车辆路径规划问题(完整代码)

本文介绍了如何使用图神经网络(GCN)和强化学习解决车辆路径规划(VRP)问题。首先定义了VRP问题,接着详细阐述了算法流程,包括GCN编码器的节点和边的聚合与组合子层,以及序列预测和分类解码器的工作原理。通过联合学习策略,结合REINFORCE和SUPERVISE进行训练。实验结果显示模型能够逐步优化车辆行驶路径,降低总距离。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

一、实验要求


复现以下论文的方法和结果:
Duan,L., Zhan,Y., Hu,H., Gong,Y., Wei,J., Zhang,X., Xu,Y.: Efficiently solving the practical vehicle routing problem: A novel joint learning approach. In: KDD. pp.3054–3063 (2020)
1.为了节省时间,训练用 10 个(或以上)的城市规模的算例。测试算例用 20 个(或者以上)规模。
2.显示出算法训练收敛过程,可视化最后的解。可能的情况下,对比 OR-Tools 的求解效果(后面详细描述)。

二、导言


车辆路径规划问题(VRP)

### 使用强化学习解决车辆路径问题的研究论文、算法实现及应用实例 #### 研究论文概述 Duan等人提出的联合学习方法用于高效解决实际中的车辆路由问题[^1]。该研究展示了如何利用深度强化学习来处理复杂的物流配送场景,特别是针对大规模城市网络下的最优路线规划。 #### 关键技术和方法论 在上述提到的工作中,作者采用了一种新颖的端到端框架,它不仅能够自动发现有效的解决方案模式,而且还能显著减少计算资源消耗并加快求解速度。具体来说: - **数据集准备**:为了验证所提方案的有效性和效率,在实验部分选择了不同大小的城市作为样本进行训练(至少包含10个城市),而测试阶段则扩展到了更大范围内的实例(不少于20个城市)。 - **模型架构设计**:引入了基于图神经网络(GNNs) 和注意力机制(Attention Mechanism)相结合的方式建模节点间关系及其重要程度;同时运用Actor-Critic结构指导行动决策过程,从而更好地平衡探索与开发之间的权衡。 - **性能评估指标**:除了展示最终找到的最佳路径外,还特别关注于记录整个迭代过程中损失函数的变化趋势曲线——即所谓的“收敛性”,以此证明新方法相较于传统OR工具包具有更快达到稳定状态的优势。 ```python import torch from torch_geometric.nn import GATConv, GCNConv class ActorCritic(torch.nn.Module): def __init__(self, input_dim, hidden_dim, output_dim): super().__init__() self.gat_layer = GATConv(input_dim, hidden_dim) self.fc_actor = torch.nn.Linear(hidden_dim, output_dim) self.fc_critic = torch.nn.Linear(hidden_dim, 1) def forward(self, x, edge_index): h = F.relu(self.gat_layer(x, edge_index)) action_scores = self.fc_actor(h) value_estimates = self.fc_critic(h).mean(dim=0) return action_scores, value_estimates # Example usage of the model with PyTorch Geometric library. model = ActorCritic(num_features, num_hidden_units, num_actions) optimizer = torch.optim.Adam(model.parameters(), lr=learning_rate) criterion = nn.MSELoss() ``` 此代码片段定义了一个简单的演员评论家(ACTOR-CRITIC)类,其中包含了GAT层用于捕捉输入特征间的依赖关系,并分别设置了两个全连接层来进行动作评分预测和价值估计计算。 #### 应用实例分析 对于具体的工业应用场景而言,这类技术可以被用来优化快递公司日常运营当中的货物分配流程,确保每辆车都能按照预定的时间表完成送货任务的同时尽可能降低运输成本。此外,随着电子商务行业的迅猛发展,此类智能调度系统的市场需求也日益增长,为企业提供了更加灵活高效的资源配置手段。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甜辣uu

谢谢关注再接再厉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值