强化学习应用(一):基于Q-learning算法的无人车配送路径规划(通过Python代码)

一、Q-learning算法介绍

Q-learning是一种强化学习算法,用于解决基于环境的决策问题。它通过学习一个Q-table来指导智能体在不同状态下采取最优动作。下面是Q-learning算法的基本步骤:

1. 定义环境:确定问题的状态和动作空间,并创建一个变量来表示环境。

2. 初始化Q-table:创建一个Q-table,其大小与状态和动作空间相匹配,并将所有Q值初始化为0。

3. 设置超参数:设置一些超参数,如学习率(alpha)、折扣因子(gamma)和探索率(epsilon)。学习率控制了Q值的更新速度,折扣因子决定了未来奖励的重要性,探索率决定了智能体在探索和利用之间的平衡。

4. 执行Q-learning算法:在每个时间步骤中,智能体根据当前状态选择一个动作。可以使用epsilon-greedy策略,在探索率epsilon的概率下选择一个随机动作,否则选择具有最高Q值的动作。执行所选动作后,智能体观察到新的状态和奖励。

5. 更新Q值:根据Q-learning更新规则,使用以下公式更新Q-table中的Q值:

  Q(s, a) = (1 - alpha) * Q(s, a) + alpha * (r + gamma * max(Q(s', a')))

  其中,s是当前状态,a是当前动作,r是观察到的奖励,s'是新的状态,a'是在新状态下具有最高Q值的动作,alpha是学习率,gamma是折扣因子。

6. 重复执行步骤4和步骤5,直到达到停止条件,如达到最大迭代次数或Q值收敛。

通过不断迭代更新Q值,Q-learning算法能够学习到最优的策略,使智能体在环境中获得最大的累积奖励。

二、无人车配送路径规划介绍

无人车配送路径规划是指无人车将货物送达到所有客户中,并返回起始位置。无人车配送路径规划可以简单抽象为旅行商问题(Traveling salesman problem, TSP)。TSP问题可以描述为一个商品推销员去若干城市推销商品,要求遍历所有城市后回到出发地,目的是选择一个最短的路线。当城市数目较少时,可以使用穷举法求解。而随着城市数增多,求解空间比较复杂,无法使用穷举法求解,因此可以采用强化学习提高求解TSP问题的效率。

三、Q-learning算法求解无人车配送路径规划

3.1部分python代码

可以自动生成地图也可导入自定义地图,只需要修改如下代码中chos的值即可。

import matplotlib.pyplot as plt
from Qlearning import Qlearning
#Chos: 1 随机初始化地图; 0 导入固定地图
chos=1
node_num=41 #当选择随机初始化地图时,自动随机生成node_num-1个城市
# 创建对象,初始化节点坐标,计算每两点距离
qlearn = Qlearning(alpha=0.5, gamma=0.01, epsilon=0.5, final_epsilon=0.05,chos=chos,node_num=node_num)
# 训练Q表、打印路线
iter_num=1000#训练次数
Curve,BestRoute,Qtable,Map=qlearn.Train_Qtable(iter_num=iter_num)
#Curve 训练曲线
#BestRoute 最优路径
#Qtable Qlearning求解得到的在最优路径下的Q表
#Map TSP的城市节点坐标


## 画图
plt.figure()
plt.ylabel("distance")
plt.xlabel("iter")
plt.plot(Curve, color='red')
plt.title("Q-Learning")
plt.savefig('curve.png')
plt.show()


3.2部分结果

(1)以国际通用的TSP实例库TSPLIB中的测试集bayg29为例:

Q-learning得到的最短路线: [1, 28, 6, 12, 9, 26, 29, 3, 5, 21, 2, 20, 10, 4, 15, 18, 14, 22, 17, 11, 19, 25, 7, 23, 27, 8, 24, 16, 13, 1]

(2)随机生成40个城市

Q-learning得到的最短路线: [1, 13, 38, 6, 3, 31, 27, 15, 34, 20, 11, 26, 2, 36, 9, 16, 37, 12, 5, 24, 17, 33, 32, 4, 28, 30, 8, 25, 23, 22, 35, 19, 29, 39, 7, 21, 14, 40, 10, 18, 1]

(3)随机生成20个城市

Q-learning得到的最短路线: [1, 15, 16, 14, 10, 4, 17, 13, 12, 6, 9, 3, 11, 8, 7, 20, 19, 2, 18, 5, 1]

四、完整Python代码

  • 17
    点赞
  • 20
    收藏
    觉得还不错? 一键收藏
  • 2
    评论
机器⼈python路径规划_基于Q-learning的机器⼈路径规划系统 (matlab) 0 引⾔ Q-Learning算法是由Watkins于1989年在其博⼠论⽂中提出,是强化学习发展的⾥程碑,也是⽬前应⽤最为⼴泛的强化学习算法。Q- Learning⽬前主要应⽤于动态系统、机器⼈控制、⼯⼚中学习最优操作⼯序以及学习棋类对弈等领域。 1 项⽬概述 Q学习在机器⼈路径规划领域有较为⼴泛的应⽤,由于其只需要与环境进⾏交互,且仅需感知当前状态和环境即可对下⼀步动作进⾏决策。 本研究以 MATLAB为基础,设计基于Q学习的最短路径规划算法,并考虑智能体的斜 向运动,更加符合实际情况。同时使⽤DQN⽹络对Q 值更新进⾏⼀定的优 化,使得Q值表能够更加符合实际应⽤。 本次研究的具体步骤如下: 设计⼀个有障碍物的地图,⽤户可以修改障碍物布局,可以指定起点和终点; 使⽤MATLAB编程实现Q-learning算法,⽤于机器⼈规划最短路径,学习算法参数可以由⽤户设置; 使⽤⽤可视化界⾯演⽰Q值变化过程及最短路径探测过程。 2 Q-learning算法思想 Q-Learning算法是⼀种off-policy的强化学习算法,⼀种典型的与模型⽆关的算法算法通过每⼀步进⾏的价值来进⾏下⼀步的动作。基于 QLearning算法智能体可以在不知道整体环境的情况下,仅通过当前状态对下⼀步做出判断。 Q-Learning强化学习算法中value-based的算法,Q是指在某⼀时刻的某⼀状态下采取某⼀动作期望获得的收益。环境会根据智能体的动 作反馈相 应的回报,所以算法的主要思想就是将状态与动作构建成⼀张Q值表,然后根据Q值来选取能够获得最⼤的收益的动作。 3 算法步骤 (⼀)Q-学习步骤 初始化Q值表。构造⼀个n⾏n列(n为状态数)的 Q值表,并将表中的所有值初始化为零。 基于当前Q值表选取下⼀个动作a。初始状态时,Q值 均为零,智能体可有很⼤的选择空间,并随机选择下⼀步动作。随着迭代次数增 加,Q值表不断更新,智能体 将会选择回报最⼤的动作。 计算动作回报。采⽤动作a后,根据当前状态和奖励,使⽤Bellman ⽅程更新上⼀个状态的Q(s, t)。 NewQ(s,a) = (1 α)Q(s,a) + α(R(s,a) + γmaxQ (s ,a )) 其中, NewQ(s,a)——上⼀个状态s和动作a的新Q值 Q(s,a)——当前状态s和动作a的Q值 R(s,a)——当前状态s和动作a的奖励r maxQ (s ,a )——新的状态下所有动作中最⼤的Q值 重复步骤3,直到迭代结束,得到最终的Q值表。 根据Q值表选择最佳路径。 (⼆)算法改进 避免局部最优 Q-learning本质上是贪⼼算法。如果每次都取预期奖励最⾼的⾏为去 做,那么在训练过程中可能⽆法探索其他可能的⾏为,甚⾄会进 ⼊"局部 最优",⽆法完成游戏。所以,设置系数,使得智能体有⼀定的概率采取 最优⾏为,也有⼀定概率随即采取所有可采取的⾏动。 将⾛过的路径纳⼊ 记忆库,避免⼩范围内的循环。 增加斜向运动 将斜向运动的奖励值设置为 2/ 2 ,取近似值0.707,可以避免出现如机器 ⼈先向左上⽅移动再向左下⽅移动⽽不选择直接向左移动两格 的情况。设 置为此值是根据地图的两格之间的相对距离确定的。 4 MATLAB实现代码 %% 基于Q-learning算法的机器⼈路径规划系统 clear %% ⾸先创造⼀个机器⼈运动的环境 % n是该运动的运动环境的矩阵environment(n,n)的⾏列⼤⼩ n = 20; % 新建⼀个全为1的n*n维environment矩阵 environment = ones(n,n); %下⾯设置环境中的障碍物,将其在矩阵中标为值-100(可⾃⾏设置障碍物) environment(2,2:5)=-100; environment(5,3:5)=-100; environment(4,11:15)=-100; environment(2,13:17)=-100; environment(7,14:18)=-100; environment(3:10,19)=-100; environment(15:18,19)=-100; environment(3:10,19)=-100; environment(3:10,7)=-100; environment(9:19,2)=-100; environment(15:17,7)=-100; environment(10,3:7)=-100; environment(13,5:8)=-100; environment(6:8,4)=-100; environment(13:18,4)=-100; environment(6

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值