基于机器学习的遥感图像识别算法(kNN/SVM/CNN/LSTM)(完整代码+数据集)

随着遥感卫星成像技术的提升和机器学习的蓬勃发展,越来越多的研究人员利用机器学习的方法来进行遥感图像识别,取得了很好的效果。在本次作业中,我将利用四种机器学习算法在 WHU-RS19 数据集上进行遥感图像识别的尝试,这其中既包括传统的 kNN 和 SVM,也包括近年来得到青睐的 CNN 和 LSTM 算法。本文的基本结构如下:

  • 数据集
    • WHU-RS19 的简单介绍
    • 数据集的预处理与索引文档的生成
  • kNN
    • kNN 的测试效果
    • 分析参数 k 对 kNN 的测试效果的影响
  • SVM
    • SVM 的测试效果
    • 分析学习率和正则化参数对 SVM 的测试效果的影响
    • SVM 权值矩阵的可视化
  • CNN
    • CNN 的测试效果
    • 不同网络结构对 CNN 的测试结果的影响
  • LSTM
    • LSTM 的测试效果
    • 分析学习率和 dropout 值对 LSTM 的测试效果的影响
  • 总结

数据集

WHU-RS19 的简单介绍

本次遥感图像识别算法采用的数据集是武汉大学提供的 WHU-RS19 数据集,该数据集包含了机场,海滩,桥,商业区,沙漠,农田,足球场,森林,工业区,草地,山,公园,停车场, 池塘, 港口, 火车站, 住宅区, 河流和高架桥总共 19 类遥感图像。图像的分辨率大都为 600×600&

  • 0
    点赞
  • 17
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

甜辣uu

谢谢关注再接再厉

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值