概率 后验 先验 似然估计


前言

学习SLAM 非线性优化时所遇到的问题


一、后验

知道结果求原因

假设:隔壁小哥要去15公里外的一个公园,他可以选择步行走路,骑自行车或者开车,然后通过其中一种方式花了一段时间到达公园,这件事中采用哪种交通工具是因,花了多长时间是果
假设我们已经知道小哥花了1个小时到了公园,那么你猜他是怎么去的(走路|自行车|开车),事实上我们不能百分百确定他的交通方式,我们正常人的思路是他很大可能是骑车过去的,当然也不排除开车过去,却由于堵车严重花费了很长时间.
这种预先已知结果(路上花的时间,在机器学习中就是观测到的x),然后根据结果估计原因, (交通方式)的概率分布即后验概率

公式化: p(交通方式\花费时间)
修改成一般公式: p(原因\结果)
公式正规化: p(θ|x)

二、先验

由历史求原因

假设隔壁叫个还没去,我们根据他的个人历史习惯来推测他会以哪种方式出行.
假设我们比较了解小哥的个人习惯,小哥是个健身爱好者就喜欢跑步运动,这个时候我们可以猜测他更可能倾向于走路过去,当然如果我的隔壁小哥是个死肥宅,这个时候我们猜测他更可能倾向于坐车,连骑自行车的可能性都不大.
这个情景中隔壁小哥的交通工具选择与花费时间不再相关,因为我们是在结果发生前就开始猜测的,根据历史规律确定原因(交通方式)的概率分布即先验概率

公式化: P(交通方式)
一般化: P(原因)
正规化: P(θ)

三、似然估计

知道原因求结果

换个情景,先考虑小哥去公园的交通方式
假设隔壁小哥徒步过去,一般情况下小哥大概要用2个小时;假设小哥决定开车,到公园半个小时是非常可能的.
这种先定下来的原因,根据原因(出行方式)来估计结果的概率分布即似然估计,根据原因来统计各种可能结果的概率即似然函数

似然函数问题公式化: P(时间|交通方式)
一般化: P(结果|原因)
正规化: P(x|θ)
P ( x ∣ z ) = P ( z ∣ x ) P ( x ) P ( z ) ∞ P ( z ∣ x ) P ( x )      贝叶斯模型 P(x|z)=\frac{P(z|x)P(x)}{P(z)}∞P(z|x)P(x) ~~~~\color{#0F0}{贝叶斯模型} P(xz)=P(z)P(zx)P(x)P(zx)P(x)    贝叶斯模型
其中:P(x|z):为后验概率
P(z|x):为似然
P(x):为先验

总结

哔哩哔哩搬运:SLAM

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值