泛函分析4——希尔伯特空间

它只是为了凑个标题

3 Hilbert Spaces

希尔伯特空间是有限维欧拉空间的推广。

3.1Introduction

Definition

Let X X X be a linear space over a field F \mathbb{F} F. An inner product on X X X is a scalar-valued function ⟨ ⋅ , ⋅ ⟩ : X × X → F \langle\cdot, \cdot\rangle: X \times X \rightarrow \mathbb{F} ,:X×XF such that for all x , y , z ∈ X x, y, z \in X x,y,zX and for all α , β ∈ F , \alpha, \beta \in \mathbb{F}, α,βF, we have

IP1. ⟨ x , x ⟩ ≥ 0 \langle x, x\rangle \geq 0 x,x0

IP2. ⟨ x , x ⟩ = 0 ⟺ x = 0 \langle x, x\rangle=0 \quad \Longleftrightarrow \quad x=0 x,x=0x=0

IP3. ⟨ x , y ⟩ = ⟨ y , x ⟩ ‾ \langle x, y\rangle=\overline{\langle y, x\rangle} \quad x,y=y,x (The bar denotes complex conjugation.);

IP4. ⟨ α x , y ⟩ = α ⟨ x , y ⟩ \langle\alpha x, y\rangle=\alpha\langle x, y\rangle αx,y=αx,y

IP5. ⟨ x + y , z ⟩ = ⟨ x , z ⟩ + ⟨ y , z ⟩ \langle x+y, z\rangle=\langle x, z\rangle+\langle y, z\rangle x+y,z=x,z+y,z

An inner product space ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,) is a linear space X X X together with an inner ⟨ ⋅ , ⋅ ⟩ \langle\cdot, \cdot\rangle , product defined on it. A n A n An inner product space is also called pre-Hilbert space.

Example

[1] Fix a positive integer n . n . n. Let X = F n . X=\mathbb{F}^{n} . X=Fn. For x = ( x 1 , x 2 , … , x n ) x=\left(x_{1}, x_{2}, \ldots, x_{n}\right) x=(x1,x2,,xn) and y = ( y 1 , y 2 , … , y n ) y=\left(y_{1}, y_{2}, \ldots, y_{n}\right) y=(y1,y2,,yn) in X X X, define
⟨ x , y ⟩ = ∑ i = 1 n x i y i ‾ \langle x, y\rangle=\sum_{i=1}^{n} x_{i} \overline{y_{i}} x,y=i=1nxiyi
The space R n \mathbb{R}^{n} Rn (resp. C n \mathbb{C}^{n} Cn ) with this inner product is called the Euclidean n n n -space (resp. unitary n n n -space) and will be denoted by ℓ 2 ( n ) \ell_{2}(n) 2(n).

Theorem

[1] (Cauchy-Bunyakowsky-Schwarz Inequality). Let ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,) be an inner product space over a field F \mathbb{F} F. Then for all x , y ∈ X x, y \in X x,yX,
∣ ⟨ x , y ⟩ ∣ ≤ ⟨ x , x ⟩ ⟨ y , y ⟩ |\langle x, y\rangle| \leq \sqrt{\langle x, x\rangle} \sqrt{\langle y, y\rangle} x,yx,x y,y
Moreover, given any x , y ∈ X , x, y \in X, x,yX, the equality
∣ ⟨ x , y ⟩ ∣ = ⟨ x , x ⟩ ⟨ y , y ⟩ |\langle x, y\rangle|=\sqrt{\langle x, x\rangle} \sqrt{\langle y, y\rangle} x,y=x,x y,y
holds if and only if x x x and y y y are linearly dependent.

[2] Let ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,) be an inner product space over a field F \mathbb{F} F. For each x ∈ X , x \in X, xX, define
∥ x ∥ : = ⟨ x , x ⟩ \|x\|:=\sqrt{\langle x, x\rangle} x:=x,x
Then ∥ ⋅ ∥ \|\cdot\| defines a norm on X . X . X. That is, ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) is a normed linear space over F \mathbb{F} F.

任何内积空间都可以通过上面的方式定义一个范数来形成赋范空间,该范数又称为内积范数。

以下例子中的范数都是内积范数inner product norm

[3] Theorem (Polarization Identity). Let ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,) be an inner product space over a field F \mathbb{F} F. Then for all x , y ∈ X x, y \in X x,yX,
⟨ x , y ⟩ = ∥ x + y ∥ 2 4 − ∥ x − y ∥ 2 4  if  F = R ,  and  \langle x, y\rangle=\frac{\|x+y\|^{2}}{4}-\frac{\|x-y\|^{2}}{4} \text { if } \mathbb{F}=\mathbb{R}, \quad \text { and } x,y=4x+y24xy2 if F=R, and 

⟨ x , y ⟩ = ∥ x + y ∥ 2 4 − ∥ x − y ∥ 2 4 + i ( ∥ x + y i ∥ 2 4 − ∥ x − y i ∥ 2 4 )  if  F = C \langle x, y\rangle=\frac{\|x+y\|^{2}}{4}-\frac{\|x-y\|^{2}}{4}+i\left(\frac{\|x+y i\|^{2}}{4}-\frac{\|x-y i\|^{2}}{4}\right) \text { if } \mathbb{F}=\mathbb{C} x,y=4x+y24xy2+i(4x+yi24xyi2) if F=C

[4] Theorem (Parallelogram Identity). Let ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,) be an inner product space over a field F \mathbb{F} F. Then for all x , y ∈ X x, y \in X x,yX,
∥ x − y ∥ 2 + ∥ x + y ∥ 2 = 2 ∥ x ∥ 2 + 2 ∥ y ∥ 2 \|x-y\|^{2}+\|x+y\|^{2}=2\|x\|^{2}+2\|y\|^{2} xy2+x+y2=2x2+2y2

平行四边形恒等式表示,对角线平方的和等于四条边平方的和。

[5] A normed linear space X X X over a field F \mathbb{F} F is an inner product space if and only if the Parallelogram Identity
∥ x − y ∥ 2 + ∥ x + y ∥ 2 = 2 ∥ x ∥ 2 + 2 ∥ y ∥ 2 \|x-y\|^{2}+\|x+y\|^{2}=2\|x\|^{2}+2\|y\|^{2} xy2+x+y2=2x2+2y2
holds for all x , y ∈ X x, y \in X x,yX.

对于一个赋范线性空间,如果其中的所有元素都满足平行四边形恒等式,那么该赋范线性空间就是一个内积空间。

Corollary

Let ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) be a normed linear space over a field F \mathbb{F} F. If every two-dimensional linear subspace of X X X is an inner product space over F , \mathbb{F}, F, then X X X is an inner product space.

范数函数对应关系是 X → F X \rightarrow \mathbb F XF, 是X中的一个元素对应一个复数

内积函数对应关系是 X × X → F X\times X \rightarrow \mathbb F X×XF,是X中的一个状态对对应一个复数

3.2 Hilbert Spaces Definition

Let ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,) be an inner product space. If X X X is complete with respect to the norm induced by the inner product ⟨ ⋅ , ⋅ ⟩ , \langle\cdot, \cdot\rangle, ,, then we say that X X X is a Hilbert space.

Hilbert space = Banach space : an complete inner product space with inner product norm

3.3 Orthogonality

Definition

Two elements x x x and y y y in an inner product space ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,) are said to be orthogonal, denoted by x ⊥ y x \perp y xy, if
⟨ x , y ⟩ = 0 \langle x, y\rangle=0 x,y=0
The set M ⊂ X M \subset X MX is called orthogonal if it consists of non-zero pairwise orthogonal elements. If M M M is a subset of X X X such that ⟨ x , m ⟩ = 0 \langle x, m\rangle=0 x,m=0 for all m ∈ M , m \in M, mM, then we say that x x x is orthogonal to M M M and write x ⊥ M . x \perp M . xM. We shall denote by
M ⊥ = { x ∈ X : ⟨ x , m ⟩ = 0 ∀ m ∈ M } M^{\perp}=\{x \in X:\langle x, m\rangle=0 \forall m \in M\} M={xX:x,m=0mM}
the set of all elements in X X X that are orthogonal to M . M . M. The set M ⊥ M^{\perp} M is called the orthogonal complement of M M M

M的正交补:X中所有与M正交的元素的集合。

Proposition

Let M M M and N N N be subsets of an inner product space ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,). Then
[1] { 0 } ⊥ = X \{0\}^{\perp}=X {0}=X and X ⊥ = { 0 } X^{\perp}=\{0\} X={0}
[2] M ⊥ M^{\perp} M is a closed linear subspace of X X X;
[ 3 ] M ⊂ ( M ⊥ ) ⊥ = M ⊥ ⊥ [3] M \subset\left(M^{\perp}\right)^{\perp}=M^{\perp \perp} [3]M(M)=M
[4] If M M M is a linear subspace, then M ∩ M ⊥ = { 0 } M \cap M^{\perp}=\{0\} MM={0};
[5] If M ⊂ N , M \subset N, MN, then N ⊥ ⊂ M ⊥ N^{\perp} \subset M^{\perp} NM
[6] M ⊥ = ( lin ⁡ M ) ⊥ = ( lin ⁡ ‾ M ) ⊥ M^{\perp}=(\operatorname{lin} M)^{\perp}=(\overline{\operatorname{lin}} M)^{\perp} M=(linM)=(linM)

Theorem

[1] (Pythagoras). Let ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,) be an inner product space over a field F \mathbb{F} F and let x , y ∈ X x, y \in X x,yX
[a] If F = R , \mathbb{F}=\mathbb{R}, F=R, then x ⊥ y x \perp y xy if and only if
∥ x + y ∥ 2 = ∥ x ∥ 2 + ∥ y ∥ 2 \|x+y\|^{2}=\|x\|^{2}+\|y\|^{2} x+y2=x2+y2
​ [b] If F = C , \mathbb{F}=\mathbb{C}, F=C, then x ⊥ y x \perp y xy if and only if
∥ x + y ∥ 2 = ∥ x ∥ 2 + ∥ y ∥ 2  and  ∥ x + i y ∥ 2 = ∥ x ∥ 2 + ∥ y ∥ 2 . \|x+y\|^{2}=\|x\|^{2}+\|y\|^{2} \text { and }\|x+i y\|^{2}=\|x\|^{2}+\|y\|^{2} . x+y2=x2+y2 and x+iy2=x2+y2.

Corollary

If M = { x 1 , x 2 , … , x n } M=\left\{x_{1}, x_{2}, \ldots, x_{n}\right\} M={x1,x2,,xn} is an orthogonal set in an inner product space ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,) then
∥ ∑ i = 1 n x i ∥ 2 = ∑ i = 1 n ∥ x i ∥ 2 \left\|\sum_{i=1}^{n} x_{i}\right\|^{2}=\sum_{i=1}^{n}\left\|x_{i}\right\|^{2} i=1nxi2=i=1nxi2

3.4 Best Approximation in Hilbert Spaces

Definition

[1] Let K K K be a closed subset of an inner product space ( X , ⟨ ⋅ , ⋅ ⟩ ) . (X,\langle\cdot, \cdot\rangle) . (X,,). For a given x ∈ X \ K , x \in X \backslash K, xX\K, a best approximation or nearest point to x x x from K K K is any element y 0 ∈ K y_{0} \in K y0K such that
∥ x − y 0 ∥ ≤ ∥ x − y ∥  for all  y ∈ K \left\|x-y_{0}\right\| \leq\|x-y\| \quad \text { for all } \quad y \in K xy0xy for all yK
Equivalently, y 0 ∈ K y_{0} \in K y0K is a best approximation to x x x from K K K if
∥ x − y 0 ∥ = inf ⁡ y ∈ K ∥ x − y ∥ = d ( x , K ) \left\|x-y_{0}\right\|=\inf _{y \in K}\|x-y\|=d(x, K) xy0=yKinfxy=d(x,K)

nearest point:顾名思义,是K中距离K的补集中某点x的最近的一些点。最佳近似点来自于K集。

[2] The (possibly empty) set of all best approximations to x x x from K K K is denoted by P K ( x ) . P_{K}(x) . PK(x). That is,
P K ( x ) = { y ∈ K : ∥ x − y ∥ = d ( x , K ) } P_{K}(x)=\{y \in K:\|x-y\|=d(x, K)\} PK(x)={yK:xy=d(x,K)}
The (generally set-valued) map P K P_{K} PK which associates each x x x in X X X with its best approximations in K K K is called the metric projection or the nearest point map. The set K K K is called

P K P_K PK: K中离x最近的点的映射。

[a] proximinal if each x ∈ X x \in X xX has a best approximation in K K K; i.e., P K ( x ) ≠ ∅ P_{K}(x) \neq \emptyset PK(x)= for each x ∈ X x \in X xX;

存在最近点,什么情况下会不存在呢?K是开集的情况下?

[b] Chebyshev if each x ∈ X x \in X xX has a unique best approximation in K K K; i.e., the set P K ( x ) P_{K}(x) PK(x) consists of a single point.

只存在一个最近点。

The following important result asserts that if K K K is a complete convex subset of an inner product space ( X , ⟨ ⋅ , ⋅ ⟩ ) , (X,\langle\cdot, \cdot\rangle), (X,,), then each x ∈ X x \in X xX has one and only one element of best approximation in K K K.

Theorem

[1] Every nonempty complete convex subset K K K of an inner product space ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,) is a Chebyshev set.

[2] Let K K K be a nonempty closed convex subset of a Hilbert space ( H , ⟨ ⋅ , ⋅ ⟩ ) , x ∈ H \ K (\mathcal{H},\langle\cdot, \cdot\rangle), x \in \mathcal{H} \backslash K (H,,),xH\K and y 0 ∈ K . y_{0} \in K . y0K. Then y 0 y_{0} y0 is the best approximation to x x x from K K K if and only if
ℜ e ⟨ x − y 0 , y − y 0 ⟩ ≤ 0  for all  y ∈ K \Re_{\mathrm{e}}\left\langle x-y_{0}, y-y_{0}\right\rangle \leq 0 \text { for all } y \in K exy0,yy00 for all yK
[3] (Projection Theorem). Let H \mathcal{H} H be a Hilbert space, M M M a closed subspace of H . \mathcal{H} . H. Then
[ a ] H = M ⊕ M ⊥ . [a] \mathcal{H}=M \oplus M^{\perp} . [a]H=MM. That is, each x ∈ H x \in \mathcal{H} xH can be uniquely decomposed in the form
x = y + z  with  y ∈ M  and  z ∈ M ⊥ x=y+z \text { with } y \in M \text { and } z \in M^{\perp} x=y+z with yM and zM
[ b ] M = M ⊥ ⊥ [b] M=M^{\perp \perp} [b]M=M

Corollary

[1] Every nonempty closed convex subset of a Hilbert space is Chebyshev.

[2] (Characterization of Best Approximations from closed subspaces). Let M M M be a closed subspace of a Hilbert space H \mathcal{H} H and let x ∈ H \ M x \in \mathcal{H} \backslash M xH\M. Then an element y 0 ∈ M y_{0} \in M y0M is the best approximation to x x x from M M M if and only if ⟨ x − y 0 , y ⟩ = 0 \left\langle x-y_{0}, y\right\rangle=0 xy0,y=0 for all y ∈ M y \in M yM (i.e., x − y 0 ∈ M ⊥ ) \left.x-y_{0} \in M^{\perp}\right) xy0M).

so map P M : x → P M ( x ) P_{M}: x \rightarrow P_{M}(x) PM:xPM(x) is also called the orthogonal projection of H \mathcal{H} H onto M M M
在这里插入图片描述

[3] If M M M is a closed subspace of a Hilbert space H , \mathcal{H}, H, and if M ≠ H , M \neq \mathcal{H}, M=H, then there exists z ∈ H \ { 0 } z \in \mathcal{H} \backslash\{0\} zH\{0} such that z ⊥ M z \perp M zM
Proof. Let x ∈ H \ M x \in \mathcal{H} \backslash M xH\M. Then by the Projection Theorem,
x = y + z ,  where  y ∈ M  and  z ∈ M ⊥ x=y+z, \text { where } y \in M \text { and } z \in M^{\perp} x=y+z, where yM and zM
Hence z ≠ 0 z \neq 0 z=0 and z ⊥ M z \perp M zM.

Proposition

Let S S S be a nonempty subset of a Hilbert space H \mathcal{H} H. Then
[ 1 ] S ⊥ ⊥ = lin ⁡ ‾ S [1] S^{\perp \perp}=\overline{\operatorname{lin}} S [1]S=linS
[ 2 ] S ⊥ = { 0 } [2] S^{\perp}=\{0\} [2]S={0} if and only if lin ⁡ ‾ S = H \overline{\operatorname{lin}} S=\mathcal{H} linS=H

3.5 Orthonormal Sets and Orthonormal Bases

Definition

[1] Let ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,) be an inner product space over F . A \mathbb{F} . A F.A set S = { x α : α ∈ Λ } S=\left\{x_{\alpha}: \alpha \in \Lambda\right\} S={xα:αΛ} of elements of X X X is called an orthonormal set if
(a) ⟨ x α , x β ⟩ = 0 \left\langle x_{\alpha}, x_{\beta}\right\rangle=0 xα,xβ=0 for all α ≠ β \alpha \neq \beta α=β (i.e., S S S is an orthogonal set), and
(b) ∥ x α ∥ = 1 \left\|x_{\alpha}\right\|=1 xα=1 for all α ∈ Λ \alpha \in \Lambda αΛ.
If S = { x α : α ∈ Λ } S=\left\{x_{\alpha}: \alpha \in \Lambda\right\} S={xα:αΛ} is an orthonormal set and x ∈ X , x \in X, xX, then the numbers ⟨ x , x α ⟩ \left\langle x, x_{\alpha}\right\rangle x,xα are called the Fourier coefficients of x x x with respect to S S S and the formal series ∑ α ∈ Λ ⟨ x , x α ⟩ x α \sum_{\alpha \in \Lambda}\left\langle x, x_{\alpha}\right\rangle x_{\alpha} αΛx,xαxα the Fourier series of x x x.

Λ \Lambda Λ表示S是X的规范正交系

[2] An orthonormal set S S S in an inner product space ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,) is said to be complete in X X X if S ⊂ T S \subset T ST and T T T is an orthonormal set in X , X, X, then S = T S=T S=T.

Simply put, a complete orthonormal set S S S in an inner product space is an orthonormal set that is not properly contained in any other orthonormal set in X ; X ; X; in other words, S S S is complete if it is a maximal orthonormal set in X X X.

完备正交集是X中最大的正交集。

It is easy exercise to show that a set S S S is complete in an inner product ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,) if and only if S ⊥ = { 0 } S^{\perp}=\{0\} S={0}.

[3] Let ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,) be an inner product space over F \mathbb{F} F. An orthonormal set { x n } \left\{x_{n}\right\} {xn} is called an orthonormal basis for X X X if for each x ∈ X x \in X xX
x = ∑ k = 1 ∞ ⟨ x , x k ⟩ x k x=\sum_{k=1}^{\infty}\left\langle x, x_{k}\right\rangle x_{k} x=k=1x,xkxk

在无限维的空间中定义的。

That is, the sequence of partial sums ( s n ) , \left(s_{n}\right), (sn), where s n = ∑ k = 1 n ⟨ x , x k ⟩ x k , s_{n}=\sum_{k=1}^{n}\left\langle x, x_{k}\right\rangle x_{k}, sn=k=1nx,xkxk, converges to x x x.

[4] isomorphic(同构)

Two linear spaces X X X and Y Y Y over the same field F \mathbb{F} F are said to be isomorphic if there is a one-to-one map ⁡ T \operatorname{map} T mapT from X X X onto Y Y Y such that for all x 1 , x 2 ∈ X x_{1}, x_{2} \in X x1,x2X and all α , β ∈ F , \alpha, \beta \in \mathbb{F}, α,βF,
T ( α x 1 + β x 2 ) = α T ( x 1 ) + β T ( x 2 ) T\left(\alpha x_{1}+\beta x_{2}\right)=\alpha T\left(x_{1}\right)+\beta T\left(x_{2}\right) T(αx1+βx2)=αT(x1)+βT(x2)

the result of that T is applied to x ∈ X x\in X xX is y ∈ Y y\in Y yY. 同构的用途是将一些领域的定理能够迁移到另一个同构的领域。

[5] isometry(等距)

Let ( X , ∥ ⋅ ∥ ) (X,\|\cdot\|) (X,) and ( Y , ∥ ⋅ ∥ ) (Y,\|\cdot\|) (Y,) be two normed linear spaces and T : X → Y T: X \rightarrow Y T:XY. Then T T T is called an isometry if
∥ T x ∥ = ∥ x ∥  for all  x ∈ X . \|T x\|=\|x\| \text { for all } x \in X . Tx=x for all xX.
Simply put, an isometry is a map that preserves lengths.

等距映射,其中左边的范数是Y中的范数,右边的范数是X中的范数。为了简洁,都写成一样的。

Normed linear spaces that are isometrically isomorphic are essentially identical

等距同构的赋范线性空间基本相同。

Theorem

[1] An orthonormal set S S S in a separable inner product space ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,) is at most countable.

可分离的内积空间的正交集合最多。

Let ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,) be a separable inner product space over F \mathbb{F} F.
[2] (Best Fit). If { x 1 , x 2 , … , x n } \left\{x_{1}, x_{2}, \ldots, x_{n}\right\} {x1,x2,,xn} is a finite orthonormal set in X X X and M = lin ⁡ { x 1 , x 2 , … , x n } , M=\operatorname{lin}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}, M=lin{x1,x2,,xn}, then for each x ∈ X x \in X xX there exists y 0 ∈ M y_{0} \in M y0M such that
$$
\begin{array}{l}
\qquad\left|x-y_{0}\right|=d(x, M) \

\end{array}
$$
 In fact,  y 0 = ∑ k = 1 n ⟨ x , x k ⟩ x k \text { In fact, } y_{0}=\sum_{k=1}^{n}\left\langle x, x_{k}\right\rangle x_{k}  In fact, y0=k=1nx,xkxk

[3] (Bessel’s Inequality). Let ( x n ) n = 1 ∞ \left(x_{n}\right)_{n=1}^{\infty} (xn)n=1 be an orthonormal sequence in X . X . X. Then for any x ∈ X x \in X xX,
∑ k = 1 ∞ ∣ ⟨ x , x k ⟩ ∣ 2 ≤ ∥ x ∥ 2 \sum_{k=1}^{\infty}\left|\left\langle x, x_{k}\right\rangle\right|^{2} \leq\|x\|^{2} k=1x,xk2x2
In particular, ⟨ x , x k ⟩ → 0 \left\langle x, x_{k}\right\rangle \rightarrow 0 x,xk0 as k → ∞ k \rightarrow \infty k.

[4] (Riesz-Fischer Theorem). Let ( x n ) 1 ∞ \left(x_{n}\right)_{1}^{\infty} (xn)1 be an orthonormal sequence in a separable Hilbert space H \mathcal{H} H and let ( c n ) 1 ∞ \left(c_{n}\right)_{1}^{\infty} (cn)1 be a sequence of scalars. Then the series ∑ k = 1 ∞ c k x k \sum_{k=1}^{\infty} c_{k} x_{k} k=1ckxk converges in H \mathcal{H} H if and only if c = ( c n ) 1 ∞ ∈ ℓ 2 . c=\left(c_{n}\right)_{1}^{\infty} \in \ell_{2} . c=(cn)12. In this case,
∥ ∑ k = 1 ∞ c k x k ∥ = ( ∑ k = 1 ∞ ∣ c k ∣ 2 ) 1 2 \left\|\sum_{k=1}^{\infty} c_{k} x_{k}\right\|=\left(\sum_{k=1}^{\infty}\left|c_{k}\right|^{2}\right)^{\frac{1}{2}} k=1ckxk=(k=1ck2)21

[5] Let H \mathcal{H} H be a separable infinite-dimensional Hilbert space and assume that S = { x n } S=\left\{x_{n}\right\} S={xn} is an orthonormal set in H \mathcal{H} H. Then the following statements are equivalent:
[a] S S S is complete in H ; \mathcal{H} ; H; i.e., S ⊥ = { 0 } S^{\perp}=\{0\} S={0}.
[b] lin ⁡ ‾ S = H ; \overline{\operatorname{lin}} S=\mathcal{H} ; linS=H; i.e., the linear span of S S S is norm-dense in H \mathcal{H} H.
[c] (Fourier Series Expansion.) For any x ∈ H x \in \mathcal{H} xH, we have
x = ∑ i = 1 ∞ ⟨ x , x i ⟩ x i x=\sum_{i=1}^{\infty}\left\langle x, x_{i}\right\rangle x_{i} x=i=1x,xixi
That is, S S S is an orthonormal basis for H \mathcal{H} H.
[d] (Parseval’s Identity.) For all x , y ∈ H x, y \in \mathcal{H} x,yH,
⟨ x , y ⟩ = ∑ k = 1 ∞ ⟨ x , x k ⟩ ⟨ y , x k ⟩ ‾ \langle x, y\rangle=\sum_{k=1}^{\infty}\left\langle x, x_{k}\right\rangle \overline{\left\langle y, x_{k}\right\rangle} x,y=k=1x,xky,xk
​ [e] For any x ∈ H x \in \mathcal{H} xH,
∥ x ∥ 2 = ∑ k = 1 ∞ ∣ ⟨ x , x k ⟩ ∣ 2 \|x\|^{2}=\sum_{k=1}^{\infty}\left|\left\langle x, x_{k}\right\rangle\right|^{2} x2=k=1x,xk2
[6] (Gram-Schmidt Orthonormalisation Procedure). If { x k } 1 ∞ \left\{x_{k}\right\}_{1}^{\infty} {xk}1 is a linearly independent set in an inner product space ( X , ⟨ ⋅ , ⋅ ⟩ ) (X,\langle\cdot, \cdot\rangle) (X,,) then there exists an orthonormal set { e k } 1 ∞ \left\{e_{k}\right\}_{1}^{\infty} {ek}1 in X X X such that
lin ⁡ { x 1 , x 2 , … , x n } = lin ⁡ { e 1 , e 2 , … , e n }  for all  \operatorname{lin}\left\{x_{1}, x_{2}, \ldots, x_{n}\right\}=\operatorname{lin}\left\{e_{1}, e_{2}, \ldots, e_{n}\right\} \quad \text { for all } lin{x1,x2,,xn}=lin{e1,e2,,en} for all 
[7] Every separable Hilbert space H \mathcal{H} H has a countable orthonormal basis.

[8] Every separable infinite-dimensional Hilbert space H \mathcal{H} H is isometrically isomorphic to ℓ 2 \ell_{2} 2.

每个可分的无限维希尔伯特空间和赋范空间 ℓ 2 \ell_{2} 2都是等距同构的。

Lemma

Let M = lin ⁡ { x n } M=\operatorname{lin}\left\{x_{n}\right\} M=lin{xn} be a linear subspace of X . X . X. Then there exists a subsequence { x n k } \left\{x_{n_{k}}\right\} {xnk} of { x n } \left\{x_{n}\right\} {xn} which has the following properties:
(i) lin ⁡ { x n k } = M \operatorname{lin}\left\{x_{n_{k}}\right\}=M lin{xnk}=M
(ii) { x n k } \left\{x_{n_{k}}\right\} {xnk} is linearly independent.

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值