泛函分析基础9-3-希尔伯特空间1-2:正交系基本性质【①正交系M中任意有限个向量x₁,…xₙ,有∥x₁+…+xₙ∥²=∥x₁∥²+…+∥xₙ∥²;②正交系M是内积空间X中线性无关子集】

仿照欧氏空间中正交坐标系的概念,我们在内积空间中引入正交系的概念.

定义1

M M M 是 内积空间 X X X 的 一个不含零的子集,若 M M M中向量两两正交,则称 M M M X X X 中 的正交系,又若 M M M 中 向量的范数都为1,则称 M M M X X X规范正交系


正交系有以下基本性质.

  • 1 ∘ 1 ^ { \circ } 1 对正交系 M M M 中任意有限个向量 x 1 , x 2 , ⋯   , x n , x _ { 1 } , x _ { 2 } , \cdots , x _ { n } , x1,x2,,xn,
    ∥ x 1 + x 2 + ⋯ + x n ∥ 2 = ∥ x 1 ∥ 2 + ∥ x 2 ∥ 2 + ⋯ + ∥ x n ∥ 2 . ( 1 ) \left\| x _ { 1 } + x _ { 2 } + \cdots + x _ { n } \right\| ^ { 2 } = \left\| x _ { 1 } \right\| ^ { 2 } + \left\| x _ { 2 } \right\| ^ { 2 } + \cdots + \left\| x _ { n } \right\| ^ { 2 } .\quad\quad(1) x1+x2++xn2=x12+x22++xn2.(1)
    事实上,由于 M M M 中向量两两正交,所以
    ∥ ∑ i = 1 n x i ∥ 2 = ⟨ ∑ i = 1 n x i , ∑ i = 1 n x i ⟩ = ∑ i , j = 1 n ⟨ x i , x i ⟩ = ∑ i = 1 n ⟨ x i , x i ⟩ = ∑ i = 1 n ∥ x i ∥ 2 . \left\| \sum _ { i = 1 } ^ { n } x _ { i } \right\| ^ { 2 } = \left\langle \sum _ { i = 1 } ^ { n } x _ { i } , \sum _ { i = 1 } ^ { n } x _ { i } \right\rangle = \sum _ { i , j = 1 } ^ { n } \left\langle x _ { i } , x _ { i } \right\rangle = \sum _ { i = 1 } ^ { n } \left\langle x _ { i } , x _ { i } \right\rangle = \sum _ { i = 1 } ^ { n } \left\| x _ { i } \right\| ^ { 2 } . i=1nxi 2=i=1nxi,i=1nxi=i,j=1nxi,xi=i=1nxi,xi=i=1nxi2.
  • 2 ∘ 2 ^ { \circ } 2 正交系 M M M X X X线性无关子集。事实上,设 x 1 , x 2 , ⋯   , x n ∈ M , x _ { 1 } , x _ { 2 } , \cdots , x _ { n } \in M , x1,x2,,xnM, 而且 ∑ i = 1 n α i x i = 0 , \sum _ { i = 1 } ^ { n } \alpha _ { i } x _ { i } = 0 , i=1nαixi=0,其中 α 1 , α 2 , ⋯   , α n \alpha _ { 1 } , \alpha _ { 2 } , \cdots , \alpha _ { n } α1,α2,,αn n n n个数,则对任何 1 ⩽ j ⩽ n , 1 \leqslant j \leqslant n , 1jn,
    0 = ⟨ ∑ i = 1 n α i x i , x j ⟩ = α j ⟨ x j , x j ⟩ = α j ∥ x j ∥ 2 . ( 2 ) 0 = \left\langle \sum _ { i = 1 } ^ { n } \alpha _ { i } x _ { i } , x _ { j } \right\rangle = \alpha _ { j } \left\langle x _ { j } , x _ { j } \right\rangle = \alpha _ { j } \left\| x _ { j } \right\| ^ { 2 } .\quad\quad(2) 0=i=1nαixi,xj=αjxj,xj=αjxj2.(2)
    由于 x j ≠ 0 , x _ { j } \neq 0 , xj=0, 因此 α j = 0 , \alpha _ { j } = 0 , αj=0, 所以 x 1 , x 2 , ⋯   , x n x _ { 1 } , x _ { 2 } , \cdots , x _ { n } x1,x2,,xn 线性无关.这就证明了 M M M X X X线性无关子集
  • 18
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值