脑功能拓扑图映射实验探究学习概述

脑功能拓扑图探究学习概述

项目简介

    利用传统脑功能分析与深度学习相结合的方法探究局部感受与脑部体感皮层拓扑映射关系。其中传统脑功能分析主要是指患者在接受局部刺激的情况下对脑部产生的脱氧血红蛋白浓度的变化的检测。深度学习主要运用于在脑部激活区被大概标明范围的情况下对目标区域的激活性进行精确识别,提高传统方法下对于激活区检测划定范围的精度。

项目背景

    脑疾病是最常见的疾病之一,脑部受损会导致躯体部分功能丧失或施展受阻,关于脑部功能的精细划分能够帮助医师根据病人的病征准确找到病灶所在,分析病情发展情况,进而帮助病患制定更好的治疗方案。

项目内容

    该项目的实施主要包括:

  • 数据采集与分析处理
  • 触觉拓扑关系映射分析模型的构建
  • 刺激映射结果
        采集的数据主要为在局部刺激下的fMRI图像数据,在block设计下为静息态与刺激态交替的方式获取脑部数据。为了得到图像数据中明显的激活区特征,对源数据进行时间层矫正、头动矫正、空间标准化、去除噪声影响等。在以上数据处理的条件下,利用广义线性模型对整个头部在刺激状态下的激活区位置与强弱成都进行估计和计算,并设计合适的估计矩阵对整个脑部激活区的激活状态进行评估。
        将处理好的激活区特征图像导入U-Net网络模型,从数据中选取具有代表性的训练集作为数据的标签,经过大量数据的训练,最终能够达到在输入未经过训练的fMRI图像的情况下准确识别图像数据中脑部激活区的在目标区域的特征位置。
        将实验结果与数学工具分析下的标记区域进行对比总结,利用深度学习的方法能够有效抑制图像噪声对激活区域位置识别的影响,使局部触觉与体感皮层目标区域的映射关系的探究能够进一步深入。在弱监督学习的方法下对目标数据进行分析,能够得到比较理想的实验结果 ,也会使实验方法具有普适性,目前仍然存在的困难在于医疗图像的格式不单一,单个数据的数据量较大,对整体数据的预处理以及模型训练造成较大的困难。

项目发展

    目前探究的项目是单人固定区域在局部刺激下与相应的脑部激活区的映射关系,随着整个实验的展开,会逐步提高整个拓扑映射关系探究的精度,在同一区域下不同位置的刺激与脑部映射的关系等。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值