【深度学习】Pytorch学习笔记(六)

1.numpy.ndarray与tensor之间的转换

import cv2 as cv
from torchvision import transforms

image = cv.imread("test.jpg")

transform = transforms.Compose([
    transforms.ToTensor()
])

image_tensor = transform(image)

转为tensor后通道数变成了第一维度,并且tensor中的元素全部在区间[0.0, 1.0]。
转为numpy.ndarray:

image_array = (image_tensor.numpy() * 255).astype('uint8')
image_array = np.transpose(image_array, (1, 2, 0))

transpose之前的shape是(channels, y, x),其下标索引为(0, 1, 2),但是用cv显示图像必须得是channels放在最后一个维度,所以需要按照shape为(1, 2, 0)进行变换,即变换为(y, x, channels)。

2.tensor标准化处理

import cv2 as cv
from torchvision import transforms

image = cv.imread("test.jpg")

transform = transforms.Compose([
    transforms.ToTensor(),
    transforms.Normalize(mean=(0.5, 0.5, 0.5), std=(0.5, 0.5, 0.5))
])

image_tensor = transform(image)

该过程为先将numpy形式转为tensor,再进行z标准化,其中mean和std分别为三个通道进行z标准化的均值标准差

3.以图象中心点为基准进行裁剪

from PIL import Image
from torchvision import transforms

image = Image.open("test.jpg")
width, height = image.size
width_red, height_red = int(width / 2), int(height / 2)

transform = transforms.Compose([
    transforms.CenterCrop((width_red, height_red)),
    transforms.ToTensor(),
])

image_tensor = transform(image)
image_pil = transforms.ToPILImage()(image_tensor)
image_pil.show()

中心裁剪仅支持PIL类型的图像,不支持通过opencv读取的像素数组。CenterCrop()的参数可以是int,也可以是元组,是int类型的裁剪图像的大小即为(int, int)。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值