动手学深度学习:4.1 模型构造

本文介绍了深度学习模型构造的一种方法,通过继承基础模型类进行定制。内容涵盖4.1.1小节,讲解如何利用类来构造具有单隐藏层的多层感知机,包括设置隐藏层和输出层的单元数,并强调了模型参数的创建和前向计算的定义。
摘要由CSDN通过智能技术生成

4.1 模型构造

让我们回顾一下在3.10节(多层感知机的简洁实现)中含单隐藏层的多层感知机的实现方法。我们首先构造Sequential实例,然后依次添加两个全连接层。其中第一层的输出大小为256,即隐藏层单元个数是256;第二层的输出大小为10,即输出层单元个数是10。我们在上一章的其他节中也使用了Sequential类构造模型。这里我们介绍另外一种基于Module类的模型构造方法:它让模型构造更加灵活。

注:其实前面我们陆陆续续已经使用了这些方法了,本节系统介绍一下。

4.1.1 继承Module类来构造模型

Module类是nn模块里提供的一个模型构造类,是所有神经网络模块的基类,我们可以继承它来定义我们想要的模型。下面继承Module类构造本节开头提到的多层感知机。这里定义的MLP类重载了Module类的__init__函数和forward函数。它们分别用于创建模型参数和定义前向计算。前向计算也即正向传播。

import torch
from torch import nn

class MLP(nn.Module):
# 声明带有模型参数的层,这里声明了两个全连接层
def init(self, kwargs):
# 调用MLP父类Module的构造函数来进行必要的初始化。这样在构造实例时还可以指定其他函数
# 参数,如“模型参数的访问、初始化和共享”一节将介绍的模型参数params
super(MLP, self).init(kwargs)
self.hidden = nn.Linear(784, 256) # 隐藏层
self.act = nn.ReLU()
self.output = nn.Linear(256, 10) # 输出层

<span class="token comment"># 定义模型的前向计算,即如何根据输入x计算返回所需要的模型输出</span>
<span class="token keyword">def</span> <span class="token function">forward</span><span class="token punctuation">(</span>self<span class="token punctuation">,</span> x<span class="token punctuation">)</span><span class="token punctuation">:</span>
    a <span class="token operator">=</span> self<span class="token punctuation">.</span>act<span class="token punctuation">(</span>self<span class="token punctuation">.</span>hidden<span class="token punctuation">(</span>x<span class="token punctuation">)</span><span class="token punctuation">)</span>
    <span class="token keyword">return</span> self<span class="token punctuation">.</span>output<span class="token punctuation">(</span>a<span class="token punctuation">)</span></code><button class="docsify-copy-code-button"><span class="label">Copy to clipboard</span><span class="error">Error</span><span class="success">Copied</span></button></pre><p>以上的<code>MLP</code>类中无须定义反向传播函数。系统将通过自动求梯度而自动生成反向传播所需的<code>backward</code>函数。</p><p>我们可以实例化<code>MLP</code>类得到模型变量<code>net</code>。下面的代码初始化<code>net</code>并传入输入数据<code>X</code>做一次前向计算。其中,<code>net(X)</code>会调用<code>MLP</code>继承自<code>Module</code>类的<code>__call__</code>函数,这个函数将调用<code>MLP</code>类定义的<code>forward</code>函数来完成前向计算。</p><pre v-pre="" data-lang="python"><code class="lang-python">X <span class="token operator">=</span> torch<span class="token punctuation">.</span>rand<span class="token punctuation">(</span><span class="token number">2</span><span class="token punctuation">,</span> <span class="token number">784</span><span class="token punctuation">)</span>

net = MLP()
print(net)
net(X)Copy to clipboardErrorCopied

输出:

MLP(
(hidden): Linear(in_features=784, out_features=256, bias=True)
(act): ReLU()
(output): Linear(in_features=256, out_features=10, bias=True)
)
tensor([[-0.1798, -0.2253, 0.0206, -0.1067, -0.0889, 0.1818, -0.1474, 0.1845,
-0.1870, 0.1970],
[-0.1843, -0.1562, -0.0090, 0.0351, -0.1538, 0.0992, -0.0883, 0.0911,
-0.2293, 0.2360]], grad_fn=<ThAddmmBackward>)
Copy to clipboardErrorCopied

注意,这里并没有将Module类命名为Layer(层)或者Model(模型)之类的名字,这是因为该类是一个可供自由组建的部件。它的子类既可以是一个层(如PyTorch提供的Linear类),又可以是一个模型(如这里定义的MLP类),或者是模型的一个部分。我们下面通过两个例子来展示它的灵活性。

4.1.2 Module的子类

我们刚刚提到,Module类是一个通用的部件。事实上,PyTorch还实现了继承自Module的可以方便构建模型的类: 如SequentialModuleListModuleDict等等。

4.1.2.1 Sequential

当模型的前向计算为简单串联各个层的计算时,Sequential类可以通过更加简单的方式定义模型。这正是Sequential类的目的:它可以接收一个子模块的有序字典(OrderedDict)或者一系列子模块作为参数来逐一添加Module的实例,而模型的前向计算就是将这些实例按添加的顺序逐一计算。

下面我们实现一个与Sequential类有相同功能的MySequential类。这或许可以帮助读者更加清晰地理解Sequential类的工作机制。

class MySequential(nn.Module):
from collections
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值