动手学深度学习:7.5 AdaGrad算法

这篇博客详细介绍了AdaGrad算法,一种针对目标函数自变量进行个体学习率调整的优化方法。通过累加梯度的平方,AdaGrad使得每个元素的学习率随时间步动态变化,从而在后期迭代中降低更新幅度。
摘要由CSDN通过智能技术生成

7.5 AdaGrad算法

在之前介绍过的优化算法中,目标函数自变量的每一个元素在相同时间步都使用同一个学习率来自我迭代。举个例子,假设目标函数为ff fst的累加效果使学习率不断衰减,自变量在迭代后期的移动幅度较小。

%matplotlib inline
import math
import torch
import sys
sys.path.append("..") 
import d2lzh_pytorch as d2l

def adagrad_2d(x1, x2, s1, s2):
g1, g2, eps = 0.2 x1, 4 x2,

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值