论文阅读:A Baseline for Few-Shot Image Classification

题目:A Baseline for Few-Shot Image Classification

论文地址:https://arxiv.org/abs/1909.02729v2

作者:Guneet S. DhillonPratik ChaudhariAvinash RavichandranStefano Soatto

发表: In ICLR, 2020. 

代码:无

创新点:

  1. 提出一种传导性微调transductive fifine-tuning),即对经过标准交叉熵损失训练的深度网络进行微调
  2. 能够在Imagenet-21k数据集上演示最初的几次小样本学习结果。
  3. 发现使用大量的元训练类(meta-training classes),即使对于大量的测试类,也能获得极高的准确率。
  4. 提出量化测试集(few-shot episode)“硬度”的指标。此度量标准可更系统的说明小样本学习算法的性能。

论文翻译

摘要:

对经过标准交叉熵损失训练的深度网络进行微调是进行小样本学习的一个强基准。如果对它们进行传导性微调(Transductive Fine-Tuning,它的性能将优于标准数据集(如Mini-Imagenet,Tiered-Imagenet,CIFAR-FS和FC-100)中具有相同超参数的最新技术(sota)。这种方法的简单性使作者能够在Imagenet-21k数据集上演示最初的几次学习结果。作者发现使用大量的元训练类(meta training classes),即使对于大量的测试类,也能获得极高的准确率。作者不提倡他们的方法作为小样本学习的解决方案,而只是使用结果突出显示当前基准和小样本学习的局限性。作者对基准数据集进行了广泛的研究,以提出量化测试集“硬度(hardness)”的指标/度量(metric)。此度量标准可用于以更系统的方式说明小样本学习算法的性能。

1、介绍:

上图为该论文图1, 箱型图box-plot)说明了对于1-shot,5-way最先进的小样本算法在Mini-ImageNet数据集上的性能。 框显示±25%的精度分位数,而缺口表示中位数及其95%的置信区间(当你不断改变样本的时候,有95%的几率,真实值落在我们的这个置信区间里,而不是仅仅局限在这次抽样)。  Whiskers表示1.5×四分位数范围,即它捕获正态分布的概率质量为99.3%。 盒型图的分布较大,说明小样本精度的标准差也较大。 这表明进展可能是虚幻的,特别是考虑到没有一个优于本文讨论的简单换能器微调(transductive fifine-tuning)基线(最右边)。(主要是以箱型图的形式来展示近些年小样本学习的sota算法,本文提出的传导性微调法精度最高)

 随着图像分类系统开始处理越来越多的类,注释大量图像的成本和获取罕见类别图像的难度增加。 这激发了人们对小样本学习的兴趣,小样本学习每类只有很少的标记样本可供训练。图1展示了sota的简单印象。 我们用公布的数字来估计这幅图表的平均精度,95%的置信区间和小样本集的数量。对于MAML(Finn等人,2017年)和MetaOptSVM(Lee等人,2019年),我们使用了作者Github实现中的集数。

 这一领域似乎在稳步发展,尽管基于图1进展缓慢。 然而,平均精度估计的方差与精度的方差不相同。前者可以是零(例如,对于无偏估计器渐近),但后者可以是任意大的。 在图1中,精度的方差非常大。 这表明,如果人们只看一下平均准确性的话,在过去几年里取得的进展可能不像看上去的那样重要。 为了复合这个问题,许多算法使用不同的模型来报告结果,不同的way(类)和shot(每类标记样本数),具有侵略性的超参数 优化。 我们的目标是为小样本学习开发一个简单的baseline(方法), 一种不需要专门训练的类或样本的数量,也不需要对不同协议进行超参数调优。

 我们能想到的最简单的基线是使用标准的交叉熵损失在元训练数据集上预先训练一个模型,然后在小样本数据集(support-set)上进行微调。 虽然这种方法是基本的,并且在此之前已经被考虑过(Vinyals等人,2016年;Chen等人,2018年),但它的性能优于许多复杂的小样本算法却没有被注意到。 事实上,在所有标准基准和小样本协议上,这一基线在执行微调换能器方面有很小的变化,优于所有最先进的算法。

 我们的贡献是为少数镜头学习开发一个换能器微调基线(transductive fifine-tuning baseline),我们的方法甚至适用于单个标记的示例和每个类的单个测试基准。 我们的基线在各种基准数据集上的性能优于最先进的数据集,都有一样的超参,如Mini-Image Net(Vinyals等人,2016年)、Tiered-Image Net(Ren等人,2018年)、CIFAR-FS(Bertinetto等人,2018年)。目前的少镜头学习方法很难扩展到大型数据集。 我们在Imagenet-21k数据集(Deng等人,2009年)上报告了第一次小样本学习结果,该数据集包含1420万 图像跨越21814个类。 在Imagenet-21k中罕见的类形成了一个小样本学习的自然基准。

 这个基线的经验表现,不应该被理解为我们认为这是执行少镜头学习的正确方法。 我们认为,复杂的元训练、理解分类学和分学、迁移学习和领域适应对于有效的少镜头学习是必要的。 然而,简单基线的性能表明,我们需要用一粒盐来解释现有的结果,并警惕适合于基准的方法。 为了促进这一点,我们提出了一个度量来量化少镜头事件的硬度,以及一种系统地报告不同少镜头协议性能的方法。

2、问题定义和相关工作

 我们首先介绍了一些表示法,并将小样本图像分类问题形式化。 设(x,y)分别表示图像及其真实(ground-truth)标签。 训练和测试数据集分别为Ds={(xi,yi)}Ns,i=1和Dq={(xi,yi)}Nq,i=1,其中yi属于某些类Ct。 在小样本学习文献中,训练数据集和测试数据集分别称为支持数据集和查询数据集,统称为小样本集(episode / task)。 类的数量是|Ct|。 集合{xi|yi=k,(xi,yi)∈Ds}是k类的支持集,其基数是s(非零)的支持样本(更一般地称为样本)。 在少数镜头设置中S是小的。 目标是学习一个函数F,利用训练集Ds(support-set)来预测测试基准x的标签,其中(x,y)∈Dq(query-set)

x代表图像;y代表对应的x标签;Ct代表训练集的类;yCt;Ds代表训练集(support-set);Dq代表测试集(query-set);F是个函数,利用训练集Ds来预测x的标签y';用 θ*(Ds)代表交叉熵损失;Ns代表支持样本的个数;pθ(·|x)是模型响应输入x在Ct上预测的概率分布;Dm代表元训练集

                                                        

 典型的监督学习方法用统计、θ*=θ*(Ds)代替上面的Ds,理想情况下,这足以对Ds进行分类,例如,交叉熵损失(argmin)

                                               

其中pθ(·|x)是模型响应输入x在Ct上预测的概率分布。

当提供测试基准时,分类规则通常被选择为该形式

                                                

 其中Ds由θ*表示。 这种形式的分类器需要失去通用性,除非θ*是一个足够的统计量,pθ∗(y|x)=p(y,x),这当然从来不是这样,特别是在Ds给定少量标注数据。 然而,它方便地分离训练和推理阶段,而不必重新访问训练集。 这在普通图像分类中可能是可取的,但在小样本学习中不是。 因此,我们采用了在(1)中更一般的F形式。

 如果我们调用测试基准x=x Ns+1,那么我们就可以得到分类器的一般形式

                                                

 除了训练集外,通常还有一个元训练集,Dm={(xi,yi)}Nm,i=1,其中yi∈Cm,类Cm与Ct不相交。  元训练的目标是使用Dm来推断小样本学习模型的参数:θ'(Dm;(Ds,Dq))=

  • 10
    点赞
  • 39
    收藏
    觉得还不错? 一键收藏
  • 5
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值