【数理统计】基本概念

数理统计基本概念

总体、样本和统计模型

例 1 有一批产品,总数为 N N N。在 N N N 件产品中,有 N θ N_{\theta} Nθ 件次品, θ \theta θ 为这批产品的次品率。 θ \theta θ 是我们感兴趣的参数,通常是未知的,需要利用统计方法对参数 θ \theta θ 做出推断。

  • 总体(Population):研究对象的全体,如例 1 中的这批产品就构成总体。通常用 X , Y X,Y X,Y 等表示。
  • 个体:总体中的每个对象,如例 1 中的每个产品。
  • 样本(Sample): X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn,样本的实现称为样本的一组观察值(Observation or data),记为 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn
    • 为了方便若不加特别声明,用 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn 既表示样本,又表示岩本观察值。
  • 样本空间(Sample Space):样本所有可能的取值构成的空间。
  • 在统计中,对总体的推断,实际上是推断总体的分布,即确定总体的分布。为此,我们可以根据对总体了解程度,假设总体的分布属于某个分布族 { P Θ , θ ∈ Θ } \{P_{\Theta}, \theta\in\Theta\} {PΘ,θΘ},至于其中哪一个分布最适合还得通过统计推断来确定,因此往往将 { P Θ , θ ∈ Θ } \{P_{\Theta}, \theta\in\Theta\} {PΘ,θΘ} 称为总体分布族。其中, Θ \Theta Θ 称为参数空间(Parameter Space)。

如例 1 中,总体分布族为 { P Θ , θ ∈ Θ } \{P_{\Theta}, \theta\in\Theta\} {PΘ,θΘ},其中
P θ ( X = k ) = ( N θ k ) ( N − N θ N − k ) ( N n ) P_{\theta}(X=k) = \frac{\begin{pmatrix}N\theta \\ k\end{pmatrix}\begin{pmatrix}N-N\theta \\ N-k\end{pmatrix}}{\begin{pmatrix}N \\ n\end{pmatrix}} Pθ(X=k)=(Nn)(Nθk)(NNθNk)
k k k 满足
max ⁡ ( ( n − N ( 1 − θ ) ) , 0 ) ≤ k ≤ min ⁡ ( N θ , n ) \max((n-N(1-\theta)),0) \leq k\leq \min(N\theta,n) max((nN(1θ)),0)kmin(Nθ,n)
X X X 表示一次试验中抽取的 n n n 件产品的次品数, Θ = { θ : 0 < θ < 1 } \Theta = \{\theta:0<\theta<1\} Θ={θ:0<θ<1} 为参数空间。

统计量及其分布

设总体分布族为 { P Θ , θ ∈ Θ } \{P_{\Theta}, \theta\in\Theta\} {PΘ,θΘ},我们仅知道总体的分布属于此分布族,但哪个最合适还需经过统计推断。推断总体的分布,实际上就是确定参数 θ \theta θ,为此,需抽取样本。样本来源于总体,它应当包含参数的所有相关信息,但观察值呈现为一堆杂乱无章数据,故需对数据进行加工或压缩,提取有关参数的信息,而剔除无关的信息,这在统计上就反映为构造样本的已知函数,即统计量(Statistic)。

例 2 设总体 X X X 服从两点(正品和次品)分布,即 P ( X = 1 ) = θ P(X = 1) = \theta P(X=1)=θ P ( X = 0 ) = 1 − θ P(X = 0) = 1 - \theta P(X=0)=1θ 0 < θ < 1 0 < \theta < 1 0<θ<1 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 是来自总体的样本,考虑样本的函数 T ( X 1 , X 2 , ⋯   , X n ) = ∑ i = 1 n X i T(X_1,X_2,\cdots,X_n) = \sum_{i=1}^{n}X_i T(X1,X2,,Xn)=i=1nXi T T T 实际上表示样本中所含的次品个数,对不同观察值可能对应相同的 T T T 值,这样实际上是对样本起到了加工压缩的作用。

统计量

定义 1 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 是来自总体 X X X 的一个样本, T ( X 1 , X 2 , ⋯   , X n ) T(X_1,X_2,\cdots,X_n) T(X1,X2,,Xn) 是样本的函数。如果 T ( X 1 , X 2 , ⋯   , X n ) T(X_1,X_2,\cdots,X_n) T(X1,X2,,Xn) 不包含任何未知参数,则称其为总体 X X X 的统计量,简记为 T T T

如例 2 中 $\sum_{i = 1}^n {{X_i}} $ 是统计量,因为它不含任何未知的参数。常用统计量包括:

  • 样本均值(Sample Mean):

X ˉ = 1 n ∑ i = 1 n X i \bar X = \frac{1}{n}\sum\limits_{i = 1}^n {{X_i}} Xˉ=n1i=1nXi

  • 样本方差(Sample Variance):

S 2 = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 {S^2} = \frac{1}{{n - 1}}\sum\limits_{i = 1}^n {{{({X_i} - \bar X)}^2}} S2=n11i=1n(XiXˉ)2

  • 样本标准差(Sample Standard Deviation):

S = 1 n − 1 ∑ i = 1 n ( X i − X ˉ ) 2 S = \sqrt {\frac{1}{{n - 1}}\sum\limits_{i = 1}^n {{{({X_i} - \bar X)}^2}} } S=n11i=1n(XiXˉ)2

  • 样本矩(Sample Moment):

    • k k k 阶原点矩:

    A k = 1 n ∑ i = 1 n X i k ,    k = 1 , 2 ⋯ {A_k} = \frac{1}{n}\sum\limits_{i = 1}^n {X_i^k} ,\;k = 1,2 \cdots Ak=n1i=1nXik,k=1,2

    • k k k 阶中心矩:

    B k = 1 n ∑ i = 1 n ( X i − X ˉ ) k ,    k = 1 , 2 ⋯ {B_k} = \frac{1}{n}\sum\limits_{i = 1}^n {{{({X_i} - \bar X)}^k}} ,\;k = 1,2 \cdots Bk=n1i=1n(XiXˉ)k,k=1,2

顺序统计量

把样本 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 的观察值 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn 从小到大进行排列,记为 x ( 1 ) , x ( 2 ) , ⋯   , x ( n ) {x_{(1)}},{x_{(2)}}, \cdots ,{x_{(n)}} x(1),x(2),,x(n),满足
x ( 1 ) ≤ x ( 2 ) ≤ ⋯ ≤ x ( n ) {x_{(1)}} \le {x_{(2)}} \le \cdots \le {x_{(n)}} x(1)x(2)x(n)
定义排在第 k   ( 1 ≤ k ≤ n ) k~(1\leq k \leq n) k (1kn) 个位置的 x ( k ) x_{(k)} x(k) 为随机变量 X ( k ) {X_{(k)}} X(k) 的观察值。显然
X ( 1 ) ≤ X ( 2 ) ≤ ⋯ ≤ X ( n ) {X_{(1)}} \le {X_{(2)}} \le \cdots \le {X_{(n)}} X(1)X(2)X(n)
X ( 1 ) , X ( 2 ) , ⋯   , X ( n ) {X_{(1)}},{X_{(2)}}, \cdots ,{X_{(n)}} X(1),X(2),,X(n)顺序统计量

其中,有
X ( 1 ) = min ⁡ { X 1 , X 2 , ⋯   , X n } {X_{(1)}} = \min \{ {X_1},{X_2}, \cdots ,{X_n}\} X(1)=min{X1,X2,,Xn}

X ( n ) = max ⁡ { X 1 , X 2 , ⋯   , X n } {X_{(n)}} = \max \{ {X_1},{X_2}, \cdots ,{X_n}\} X(n)=max{X1,X2,,Xn}

对给定的 p    ( 0 < p < 1 ) p\;(0 < p < 1) p(0<p<1),定义样本 p p p 分位数 m p m_p mp

  • n p np np 不是整数时,
    m p = λ ( [ n p + 1 ] ) m_p = \lambda_{([np+1])} mp=λ([np+1])

  • n p np np 是整数时,
    m p = 1 2 ( X ( n p ) + X ( n p + 1 ) )    {m_p} = \frac{1}{2}({X_{(np)}} + {X_{(np + 1)}})\; mp=21(X(np)+X(np+1))

充分统计量

统计量既然是对样本的加工或压缩,在这个过程中可能有损失有关参数的一部分信息,现在问题是在这个过程中是否存在某些统计量,既起到压缩作用,又不损失参数的信息,这样的统计量称为充分统计量。

例 3(续例 2) 设样本的观察值 x 1 , x 2 , ⋯   , x n x_1,x_2,\cdots,x_n x1,x2,,xn,则样本的联合分布函数为
P ( X 1 = x 1 , X 2 = x 2 , ⋯   , X n = x n ) = θ s ( 1 − θ ) n − s P({X_1} = {x_1},{X_2} = {x_2}, \cdots ,{X_n} = {x_n}) = {\theta ^s}{(1 - \theta )^{n - s}} P(X1=x1,X2=x2,,Xn=xn)=θs(1θ)ns
其中 x i = 0 x_i = 0 xi=0 1 1 1 s = ∑ i = 1 n x i s = \sum_{i = 1}^{n} x_i s=i=1nxi

定义 2 设总体分布族为 { P Θ , θ ∈ Θ } \{P_{\Theta}, \theta\in\Theta\} {PΘ,θΘ} T ( x ) T(x) T(x) 是统计量。如果在给定 T ( X ) = t T(X) = t T(X)=t 的条件下, X X X 的条件分布与参数 θ \theta θ 无关,则称统计量 T ( X ) T(X) T(X) 是参数 θ \theta θ充分统计量(Sufficient Statistics)。

一般情况下,利用条件分布证明统计量的充分性是比较困难的。但存在证明充分性的一个充分必要准则,这是下面的因子分解定理(Factorization theorem)。

定理 1 设总体分布族为 { P Θ , θ ∈ Θ } \{P_{\Theta}, \theta\in\Theta\} {PΘ,θΘ} T ( x ) T(x) T(x) 是充分统计量,当且仅当在一个定义在 I × Θ I \times \Theta I×Θ 上的函数 g ( t , θ ) g(t,\theta) g(t,θ) 及定义在 R n \mathbb{R}^n Rn 上的函数 h ( x ) h(x) h(x) 使得
p ( x , θ ) = g ( T ( x ) , θ ) h ( x ) p(x,\theta) = g(T(x),\theta)h(x) p(x,θ)=g(T(x),θ)h(x)
对所有的 x ∈ R n x\in \mathbb{R}^n xRn 都成立,其中 I I I T ( x ) T(x) T(x) 的值域, p ( x , θ ) p(x,\theta) p(x,θ) 是样本的联合概率密度函数或分布律。

抽样分布

特征函数

X X X 为随机变量,称函数
ϕ x ( t ) = E ( e i t X ) \phi_x(t) = E(e^{itX}) ϕx(t)=E(eitX)
X X X 的特征函数。

常见分布的特征函数:

  • 二项分布 B ( n , p ) B(n,p) B(n,p)

ϕ ( t ) = ( p e i t + ( 1 − p ) ) n \phi(t) = (pe^{it} + (1-p))^n ϕ(t)=(peit+(1p))n

  • Poisson 分布 P ( λ ) P(\lambda) P(λ)

ϕ ( t ) = exp ⁡ { λ ( e i t − 1 } \phi(t) = \exp\{\lambda(e^{it - 1}\} ϕ(t)=exp{λ(eit1}

  • 正态分布 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2)

ϕ ( t ) = exp ⁡ { i μ t − 1 2 σ 2 t 2 } \phi(t) = \exp\{i\mu t - \frac{1}{2}\sigma^2t^2\} ϕ(t)=exp{iμt21σ2t2}

特征函数的特征:

  • 有界性:对于任意 t ∈ R t\in\mathbb{R} tR,有 ∣ ϕ ( t ∣ ≤ ϕ ( 0 ) = 1 |\phi(t| \leq \phi(0) = 1 ϕ(tϕ(0)=1
  • Y = a X + b Y = aX +b Y=aX+b,其中 a , b a,b a,b 为常数,则

ϕ Y ( t ) = e i b t ϕ X ( a t ) \phi_Y(t) = e^{ibt} \phi_X(at) ϕY(t)=eibtϕX(at)

  • X X X Y Y Y 相互独立,则有

ϕ X + Y ( t ) = ϕ X ( t ) ϕ Y ( t ) \phi_{X+Y} (t) = \phi_X(t) \phi_Y(t) ϕX+Y(t)=ϕX(t)ϕY(t)

  • E ( X n ) E(X^n) E(Xn) 存在,则 ϕ X ( n ) ( t ) \phi_X^{(n)}(t) ϕX(n)(t) 存在,且

E ( X k ) = i − k ϕ ( k ) ( 0 ) , k = 1 , 2 , ⋯   , n E(X^k) = i^{-k} \phi^{(k)} (0),k = 1,2,\cdots,n E(Xk)=ikϕ(k)(0),k=1,2,,n

  • 特征函数与分布函数相互偎依确定

三大分布

χ 2 \chi^2 χ2 分布

设随机变量 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 相互独立且同服从标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1),称随机变量
χ 2 = X 1 2 + X 2 2 + ⋯ + X n 2 {\chi ^2} = X_1^2 + X_2^2 + \cdots + X_n^2 χ2=X12+X22++Xn2
所服从的分布为自由度是 n n n χ 2 \chi^2 χ2 分布,记为 χ 2 ∼ χ 2 ( n ) \chi^2 \sim \chi^2(n) χ2χ2(n)

定理 2 设简单样本 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2),则有
χ 2 = 1 σ 2 ∑ i = 1 n ( X i − μ ) 2 ∼ χ 2 ( n ) {\chi ^2} = \frac{1}{{{\sigma ^2}}}\sum\limits_{i = 1}^n {{{({X_i} - \mu )}^2}} \sim \chi^2(n) χ2=σ21i=1n(Xiμ)2χ2(n)

定理 3 X ∼ χ 2 ( n ) X \sim \chi^2(n) Xχ2(n),则

  • X X X 的特征函数为

ϕ ( t ) = E e i t X = ( 1 − 2 i t ) − n 2 \phi(t) = E e^{itX} = (1-2it)^{-\frac{n}{2}} ϕ(t)=EeitX=(12it)2n

  • E ( X ) = n , D ( X ) = 2 n E(X) = n, D(X) = 2n E(X)=n,D(X)=2n

定理 4 X 1 ∼ χ 2 ( n 1 ) X_1 \sim \chi^2(n_1) X1χ2(n1) X 2 ∼ χ 2 ( n 2 ) X_2 \sim \chi^2(n_2) X2χ2(n2),且相互独立,则 X 1 + X 2 ∼ χ 2 ( n 1 + n 2 ) X_1+X_2\sim\chi^2(n_1+n_2) X1+X2χ2(n1+n2)

t t t 分布

设随机变量 X ∼ N ( 0 , 1 ) X\sim N(0,1) XN(0,1) Y ∼ χ 2 ( n ) Y\sim \chi^2(n) Yχ2(n),且 X X X Y Y Y 相互独立,则称随机变量
T = X Y / N T = \frac{X}{\sqrt{Y/N}} T=Y/N X
所服从的分布为自由度为 n n n t t t 分布,记为 T ∼ t ( n ) T \sim t(n) Tt(n)

F F F 分布

设随机变量 X ∼ χ 2 ( n 1 ) X\sim \chi^2(n_1) Xχ2(n1) Y ∼ χ 2 ( n 2 ) Y\sim\chi^2(n_2) Yχ2(n2),且 X X X Y Y Y 相互独立,则称随机变量
F = X / n 1 Y / n 2 F = \frac{X/n_1}{Y/n_2} F=Y/n2X/n1
所服从的分布为自由度为 n 1 , n 2 n_1,n_2 n1,n2 F F F 分布,记为 F ∼ F ( n 1 , n 2 ) F\sim F(n_1,n_2) FF(n1,n2)

正态总体下常见统计量的分布

定理 5 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 是来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) 的一个简单样本, A A A p × n p \times n p×n 阶矩阵,则
KaTeX parse error: Unknown column alignment: * at position 28: …{\begin{array}{*̲{20}{c}} {{Y_1}…
其中, 1 = ( 1 , 1 , ⋯   , 1 ) T \mathbf{1} = (1,1,\cdots,1)^T 1=(1,1,,1)T

定理 6 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 是来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) 的一个简单样本,则

  • X ˉ ∼ N ( μ , σ 2 n ) \bar{X} \sim N(\mu,\frac{\sigma^2}{n}) XˉN(μ,nσ2)
  • X ˉ \bar{X} Xˉ S 2 S^2 S2 相互独立
  • ( n − 1 ) S 2 σ 2 ∼ χ 2 ( n − 1 ) \frac{(n - 1)S^2}{\sigma^2}\sim \chi^2(n - 1) σ2(n1)S2χ2(n1)

定理 7 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 是来自正态总体 N ( μ , σ 2 ) N(\mu,\sigma^2) N(μ,σ2) 的一个简单样本,则
X ˉ − μ S / n ∼ t ( n − 1 ) \frac{\bar{X} - \mu}{S/\sqrt{n}} \sim t(n-1) S/n Xˉμt(n1)

定理 8 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn Y 1 , Y 2 , ⋯   , Y n Y_1,Y_2,\cdots,Y_n Y1,Y2,,Yn 是来自正态总体 N ( μ 1 , σ 2 ) N(\mu_1,\sigma^2) N(μ1,σ2) N ( μ 2 , σ 2 ) N(\mu_2,\sigma^2) N(μ2,σ2) 的两个简单样本,且两样本独立,则
T = ( X ˉ − Y ˉ ) − ( μ 1 − μ 2 ) S w 1 n 1 + 1 n 2 ∼ t ( n 1 + n 2 − 2 ) T = \frac{{(\bar X - \bar Y) - ({\mu _1} - {\mu _2})}}{{{S_w}\sqrt {\frac{1}{{{n_1}}} + \frac{1}{{{n_2}}}} }} \sim t(n_1+n_2-2) T=Swn11+n21 (XˉYˉ)(μ1μ2)t(n1+n22)
其中,$\bar X = \frac{1}{{{n_1}}}\sum_{i = 1}^{{n_1}} {{X_i}} , , \bar Y = \frac{1}{{{n_2}}}\sum_{i = 1}^{{n_2}} {{Y_i}}$,
S 1 2 = 1 n 1 − 1 ∑ i = 1 n 1 ( X i − X ˉ ) 2 S_1^2 = \frac{1}{{{n_1} - 1}}\sum\limits_{i = 1}^{{n_1}} {{{({X_i} - \bar X)}^2}} S12=n111i=1n1(XiXˉ)2

S 2 2 = 1 n 2 − 1 ∑ i = 1 n 2 ( Y i − Y ˉ ) 2 S_2^2 = \frac{1}{{{n_2} - 1}}\sum\limits_{i = 1}^{{n_2}} {{{({Y_i} - \bar Y)}^2}} S22=n211i=1n2(YiYˉ)2

S w 2 = ( n 1 − 1 ) S 1 2 + ( n 2 − 1 ) S 2 2 n 1 + n 2 − 2 S_w^2 = \frac{{({n_1} - 1)S_1^2 + ({n_2} - 1)S_2^2}}{{{n_1} + {n_2} - 2}} Sw2=n1+n22(n11)S12+(n21)S22

定理 9 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn Y 1 , Y 2 , ⋯   , Y n Y_1,Y_2,\cdots,Y_n Y1,Y2,,Yn 是来自正态总体 N ( μ 1 , σ 2 ) N(\mu_1,\sigma^2) N(μ1,σ2) N ( μ 2 , σ 2 ) N(\mu_2,\sigma^2) N(μ2,σ2) 的两个简单样本,且两样本独立,则
F = S 1 2 / σ 1 2 S 2 2 / σ 2 2 ∼ F ( n 1 − 1 , n 2 − 1 ) F = \frac{S_1^2/\sigma_1^2}{S_2^2/\sigma_2^2} \sim F(n_1-1,n_2-1) F=S22/σ22S12/σ12F(n11,n21)

定理 10 设随机变量 X 1 , X 2 , ⋯   , X n X_1,X_2,\cdots,X_n X1,X2,,Xn 相互独立且同服从正态分布 N ( 0 , 1 ) N(0,1) N(0,1) A A A 为实对称矩阵。令 X = ( X 1 , X 2 , ⋯   , X n ) ′ X = (X_1,X_2,\cdots,X_n)' X=(X1,X2,,Xn),则二次型
Y = X ′ A X ∼ χ 2 ( p ) Y = X'AX\sim \chi^2(p) Y=XAXχ2(p)
的充分必要条件是 A 2 = A A^2 = A A2=A (幂等阵),且 p = r a n k ( A ) p = \mathrm{rank}(A) p=rank(A)

分位点

定义 设随机变量 X X X 的分布函数为 F ( x ) F(x) F(x),对任意给定的实数 p ( 0 < p < 1 ) p(0<p<1) p(0<p<1),若存在 x p x_p xp 使得
P ( X ≤ x p ) = F ( x p ) = p P(X\leq x_p) = F(x_p) = p P(Xxp)=F(xp)=p
成立,则称 x p x_p xp 为此概率分布的 p p p 分位点。

常见分布分位点记号:

  • 标准正态分布 N ( 0 , 1 ) N(0,1) N(0,1) z p z_p zp 表示,即 P ( X ≤ z p ) = p P(X \leq z_p) = p P(Xzp)=p,由对称性有 z 1 − p = − z p z_{1-p} = -z_p z1p=zp

  • χ 2 ( n ) \chi^2(n) χ2(n) 分布:用 χ p 2 ( n ) \chi_p^2(n) χp2(n) 表示 p p p 分位点,即 P ( χ 2 ≤ χ p 2 ( n ) ) = p P(\chi^2 \leq \chi^2_p(n)) = p P(χ2χp2(n))=p

  • t ( n ) t(n) t(n) 分布:用 t p ( n ) t_p(n) tp(n) 表示,即 P ( T ≤ t p ( n ) ) = p P(T\leq t_p(n)) = p P(Ttp(n))=p

  • F ( n 1 , n 2 ) F(n_1,n_2) F(n1,n2) 分布:用 F p ( n 1 , n 2 ) F_p(n_1,n_2) Fp(n1,n2) 表示,即 P { F ≤ F p ( n 1 , n 2 ) } = p P\{ F \le {F_p}({n_1},{n_2})\} = p P{FFp(n1,n2)}=p
    F p ( n 2 , n 1 ) = 1 F 1 − p ( n 1 , n 2 ) {F_p}({n_2},{n_1}) = \frac{1}{{{F_{1 - p}}({n_1},{n_2})}} Fp(n2,n1)=F1p(n1,n2)1

参考文献

[1] 孙海燕、周梦等,数理统计,2016。

  • 0
    点赞
  • 5
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值