【计量经济学及Stata应用】第7章 异方差

文章详细阐述了异方差性的统计学概念,包括其对OLS估计量的影响,如导致标准误的不准确性。介绍了三种异方差性检验方法:残差图、BP检验和怀特检验,并提供了Stata软件中进行这些检验的命令示例。此外,还讨论了处理异方差性的策略,如使用稳健标准误、加权最小二乘法(WLS)和可行加权最小二乘法(FWLS),并提供了Stata中的应用命令。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

7.1 异方差的后果

(1)OLS估计量依然是无偏、一致渐进的

(2)OLS估计量方差不再是 σ 2 ( X ′ X ) − 1 \sigma^2(\boldsymbol{X'X})^{-1} σ2(XX)1,不满足球形扰动项的假设
使用普通标准误的 t t t检验、&F&检验失效
使用稳健标准误

(3)高斯-马尔可夫定理不再成立,OLS估计量不是BLUE
加权最小二乘法是BLUE

7.2 异方差的例子

7.3 异方差的检验

在这里插入图片描述

1.画残差图
残差可视为扰动项的实现值,可通过残差的波动来大致考察是否存在异方差
这是最直观的方法,但不严格

2.BP检验
假设样本数据 iid
原假设为同方差
辅助回归: e i 2 = δ 1 + δ 2 x i 2 + … + δ K x i K + e r r i o r i e_i^2=\delta_1+\delta_2 x_{i2}+\ldots+\delta_K x_{iK}+errior_i ei2=δ1+δ2xi2++δKxiK+erriori
记此辅助回归的拟合优度为 R 2 R^2 R2. R 2 R^2 R2越高,越显著,越可以拒绝 H 0 : δ 2 = … = δ K = 0 H_0:\delta_2=\ldots=\delta_K=0 H0:δ2==δK=0
L M LM LM统计量: L M = n R 2 ⟶ d χ 2 ( K − 1 ) LM=nR^2\stackrel{d}{\longrightarrow}\chi^2(K-1) LM=nR2dχ2(K1)
如果 L M LM </

评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值