【计量经济学及Stata应用】第7章 异方差

7.1 异方差的后果

(1)OLS估计量依然是无偏、一致渐进的

(2)OLS估计量方差不再是 σ 2 ( X ′ X ) − 1 \sigma^2(\boldsymbol{X'X})^{-1} σ2(XX)1,不满足球形扰动项的假设
使用普通标准误的 t t t检验、&F&检验失效
使用稳健标准误

(3)高斯-马尔可夫定理不再成立,OLS估计量不是BLUE
加权最小二乘法是BLUE

7.2 异方差的例子

7.3 异方差的检验

在这里插入图片描述

1.画残差图
残差可视为扰动项的实现值,可通过残差的波动来大致考察是否存在异方差
这是最直观的方法,但不严格

2.BP检验
假设样本数据 iid
原假设为同方差
辅助回归: e i 2 = δ 1 + δ 2 x i 2 + … + δ K x i K + e r r i o r i e_i^2=\delta_1+\delta_2 x_{i2}+\ldots+\delta_K x_{iK}+errior_i ei2=δ1+δ2xi2++δKxiK+erriori
记此辅助回归的拟合优度为 R 2 R^2 R2. R 2 R^2 R2越高,越显著,越可以拒绝 H 0 : δ 2 = … = δ K = 0 H_0:\delta_2=\ldots=\delta_K=0 H0:δ2==δK=0
L M LM LM统计量: L M = n R 2 ⟶ d χ 2 ( K − 1 ) LM=nR^2\stackrel{d}{\longrightarrow}\chi^2(K-1) LM=nR2dχ2(K1)
如果 L M LM LM统计量大于 χ 2 ( K − 1 ) \chi^2(K-1) χ2(K1)的临界值,则拒绝同方差的原假设

3.怀特检验
在BP检验的辅助回归中加入所有的二次项(含平方项与交叉项)
二元回归的怀特检验的辅助回归为
e i 2 = δ 1 + δ 2 x i 2 + δ 3 x i 3 + δ 4 x i 2 2 + δ 5 x i 3 2 + δ 6 x i 2 x i 3 + e r r o r i e_i^2=\delta_1+\delta_2 x_{i2}+\delta_3 x_{i3}+\delta_4 x_{i2}^2+\delta_5 x_{i3}^2+\delta_6 x_{i2}x_{i3}+error_i ei2=δ1+δ2xi2+δ3xi3+δ4xi22+δ5xi32+δ6xi2xi3+errori
优点:它可以检验任何形式的异方差,因为根据泰勒展开式,二次函数可以很好地逼近任何光滑函数。
缺点:如果解释变量较多,则解释变量的二次项(含交叉项)将更多,在辅助回归中将损失较多样本容量。

7.4 异方差的处理

在这里插入图片描述
1.使用“OLS+稳健标准误”
仍然进行OLS回归
但是使用在异方差情况下也成立的稳健标准误
这是通用的方法

2.加权最小二乘法(WLS)
方差较小的观测值包含的信息较大
给予方差较小的观测值较大的权重
然后进行加权最小二乘法估计
通过变量转换,使得变换后的模型满足球形扰动项的假定
假定 V a r ( ε i ∣ x i ) ≡ σ i 2 = σ 2 v i Var(\varepsilon_i|\boldsymbol{x_i})\equiv\sigma_i^2=\sigma^2v_i Var(εixi)σi2=σ2vi
y i v i = β 1 1 v i + β 2 x i 2 v i + … + β L x i K v i + ε i v i \frac{y_i}{\sqrt{v_i}}=\beta_1\frac{1}{\sqrt{v_i}}+\beta_2\frac{x_{i2}}{\sqrt{v_i}}+\ldots+\beta_L\frac{x_{iK}}{\sqrt{v_i}}+\frac{\varepsilon_i}{\sqrt{v_i}} vi yi=β1vi 1+β2vi xi2++βLvi xiK+vi εi
对上式进行OLS回归,即为WLS
加权之后的回归方程满足球形扰动项的假定,故是BLUE。
WLS定义为最小化“加权的残差平方和” m i n ∑ i = 1 n ( e i / v i ) 2 = ∑ i = 1 n e i 2 v i min\sum\limits_{i=1}^n(e_i/\sqrt{v_i})^2=\sum\limits_{i=1}^n\frac{e_i^2}{v_i} mini=1n(ei/vi )2=i=1nviei2
在Stata中,权重为 1 / v i 1/v_i 1/vi,方差的倒数

3.可行加权最小二乘法(FWLS)
σ i 2 \sigma_i^2 σi2不知道,WLS不可行
怎么办?那就估计 σ i 2 \sigma_i^2 σi2
进行如下辅助回归
e i 2 = δ 1 + δ 2 x i 2 + … + δ K x i K + e r r i o r i e_i^2=\delta_1+\delta_2 x_{i2}+\ldots+\delta_K x_{iK}+errior_i ei2=δ1+δ2xi2++δKxiK+erriori
通过此辅助回归的拟合值,既可获得 σ i 2 \sigma_i^2 σi2的估计值
σ i 2 ^ = δ 1 ^ + δ 2 ^ x i 2 + … + δ K ^ x i K \hat{\sigma_i^2}=\hat{\delta_1}+\hat{\delta_2}x_{i2}+\ldots+\hat{\delta_K}x_{iK} σi2^=δ1^+δ2^xi2++δK^xiK
保证 σ i 2 ^ \hat{\sigma_i^2} σi2^为证,一般换成对数 l n e i 2 = … … lne_i^2=…… lnei2=……(略)
然后得到的拟合值取e指数
1 / σ i 2 ^ 1/\hat{\sigma_i^2} 1/σi2^作为权重进行WLS回归

7.5 处理异方差的Stata命令及示例

nerlove.dta

1.画残差图

reg lntc lnq lnpl lnpk lnpf
rvfplot    //残差与拟合值的散点图
rvpplot lnq   //残差与解释变量lnq的散点图

在这里插入图片描述
拟合值较小时,扰动项的方差较大

在这里插入图片描述
lnq越小,扰动项的方差越大

上面两幅图,表明很可能存在异方差,即扰动项的方差随着观测值而变

2.BP检验
estat hettest,iid rhs
estat:表示在完成估计后所计算的后续统计量
hettest:heteroscedasticity test
iid:表示仅假定数据为iid,而无需正态假定
选择项 rhs:表示使用方程邮编的全部解释变量进行辅助回归。【没有加这个选择项默认使用拟合值进行辅助回归】

quietly reg lntc lnq lnpl lnpk lnpf   //quietly表示执行此命令,但不显示运行结果
estat hettest,iid   //使用拟合值进行BP检验
estat hettest,iid rhs  //使用所有解释变量进行BP检验
estat hettest lnq,iid   //使用变量lnq进行BP检验

在这里插入图片描述
在这里插入图片描述

在这里插入图片描述

3.怀特检验
estat imtest,white
在这里插入图片描述

4.WLS
reg y x1 x2 x3 [aw=1/var]
aw表示analytical weight,为扰动项方差(而不是标准差)的倒数

OLS回归→计算残差→得到残差平方的对数→辅助回归→计算辅助回归的拟合值→去掉对数,得到方差估计值→WLS回归

在这里插入图片描述

在这里插入图片描述
在这里插入图片描述

7.6 Stata命令的批处理

  • 5
    点赞
  • 29
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值