7.1 异方差的后果
(1)OLS估计量依然是无偏、一致渐进的
(2)OLS估计量方差不再是 σ 2 ( X ′ X ) − 1 \sigma^2(\boldsymbol{X'X})^{-1} σ2(X′X)−1,不满足球形扰动项的假设
使用普通标准误的 t t t检验、&F&检验失效
使用稳健标准误
(3)高斯-马尔可夫定理不再成立,OLS估计量不是BLUE
加权最小二乘法是BLUE
7.2 异方差的例子
略
7.3 异方差的检验
1.画残差图
残差可视为扰动项的实现值,可通过残差的波动来大致考察是否存在异方差
这是最直观的方法,但不严格
2.BP检验
假设样本数据 iid
原假设为同方差
辅助回归: e i 2 = δ 1 + δ 2 x i 2 + … + δ K x i K + e r r i o r i e_i^2=\delta_1+\delta_2 x_{i2}+\ldots+\delta_K x_{iK}+errior_i ei2=δ1+δ2xi2+…+δKxiK+erriori
记此辅助回归的拟合优度为 R 2 R^2 R2. R 2 R^2 R2越高,越显著,越可以拒绝 H 0 : δ 2 = … = δ K = 0 H_0:\delta_2=\ldots=\delta_K=0 H0:δ2=…=δK=0
L M LM LM统计量: L M = n R 2 ⟶ d χ 2 ( K − 1 ) LM=nR^2\stackrel{d}{\longrightarrow}\chi^2(K-1) LM=nR2⟶dχ2(K−1)
如果 L M LM </