Unsupervised Data Augmentation For Consistency Training 论文阅读

本文探讨了在半监督学习中如何利用无标签数据进行增强。论文提出,适用于有标签数据的增强方法同样适用于无标签数据,并在文本分类和图像分类任务中进行了实验。通过一致性训练,论文引入了一种新的无监督损失,结合有监督损失进行反向传播。实验中,论文采用了RandAugment等方法进行图像增强,并发现适当的数据增强策略能显著提升模型性能。此外,论文还提出了Training Signal Annealing (TSA) 技术来防止有标签数据过拟合。然而,由于计算资源限制,作者无法进行全面的复现实验,但仍将代码分享在GitHub上。
摘要由CSDN通过智能技术生成

Unsupervised Data Augmentation For Consistency Training 论文阅读

UDA这篇文章针对的是半监督学习中无标签数据的增强,论文提出,使用有标签数据的data agumentation方法,也能有效的应用于无标签数据的增强中。论文在文本分类和图像分类问题上进行了实验对比。

这是半监督训练的流程图,左侧是有标签数据,右侧是无标签数据。可以看出有标签数据的做法和普通做法没什么区别,而无标签数据采用的一种叫一致性训练的思想(不是这篇论文的成果):首先对无标签数据做一个增强,然后将增强前的数据和增强后的数据都送进网络,出一个预测结果,将这两个结果算一个KL散度作为无监督的loss,和有监督的loss加在一起做BP。目标函数就是这个样子:

min ⁡ θ J ( θ ) = E x , y ∗ ∈ L [ − log ⁡ p θ ( y ∗ ∣ x ) ] + λ E x ∈ U E x ^ ∼ q ( x ^ ∣ x ) [ D K L ( p θ ~ ( y ∣ x ) ∥ p θ ( y ∣ x ^ ) ) )

  • 4
    点赞
  • 6
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
无监督的数据增强是一种用于一致性训练的技术。在机器学习任务中,一致性训练是指通过使用多个不同版本的输入数据来增强模型的鲁棒性和泛化能力。 传统的数据增强技术通常需要手动标注数据,并提供给模型进行有监督学习。然而,当可用的标注数据有限或者成本较高时,无监督的数据增强技术可以用来增加训练数据的数量和多样性,从而改善模型的性能。 无监督的数据增强技术通过对原始数据进行一系列变换和扰动来生成新的训练样本,而这些变换和扰动不需要额外的标注信息。这些变换可以包括图像翻转、旋转、缩放、平移、加噪声等等。通过这种方式,无监督的数据增强可以从有限的训练样本中生成大量的人工样本,有效地扩展了训练数据的规模和多样性。 无监督的数据增强可以用于各种机器学习任务,如图像分类、目标检测、语义分割等。通过在一致性训练中使用无监督的数据增强,模型可以学习到不同版本的输入数据之间的一致性,并提高对于噪声和变化的鲁棒性。例如,在图像分类任务中,模型可以通过看到同一张图像在不同变换下的预测结果来学习更稳定和一致的特征表示。 总之,无监督的数据增强是一种有效的技术,可以通过生成大量的人工训练样本来改善模型的性能。在一致性训练中,无监督的数据增强可以帮助模型学习到不同版本的输入数据之间的一致性,从而提高模型的鲁棒性和泛化能力。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值