ViT模型实现-数据处理

1368 篇文章 ¥199.90 ¥299.90
958 篇文章 ¥199.90 ¥299.90
本文介绍了如何使用PyTorch和torchvision对图像进行预处理,包括转换PIL图像和NumPy数组为torch.Tensor,以及数据增强。详细解释了预处理流程中的每个步骤,如调整大小、随机裁剪、水平翻转和归一化。还讨论了torchvision库的作用,以及如何在训练和测试模式下进行不同的预处理。最后,展示了如何从图像路径获取标签并进行预处理,为ViT模型训练准备数据。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

ViT模型实现

将PIL图像或NumPy ndarray转换为torch.Tensor

torchvision是什么

img.convert("RGB"): 这一行确保图像是RGB格式的

python字典

label_map 


ViT模型实现

数据说明:

  • fruits: banana, apple, pear, grapes, orange, kiwi, watermelon, pomegranate, pineapple, mango
  • vegetables: cucumber, carrot, capsicum, onion, potato, lemon, tomato, raddish, beetroot, cabbage, lettuce, spinach, soy bean, cauliflower, bell pepper, chilli pepper, turnip, corn, sweetcorn, sweet potato, paprika, jalepeño, ginger, garlic, peas, eggplant

三个文件夹train、test、validation

  • train: 每类100张图片
  • test: 每类10张图片
  • validation: 每类10张图片

# 读取数据集
import paddle
import paddle.nn as nn
import os
from PIL import Image
import numpy as np
import padd
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值