AlexNet、VGG、ResNet、Inception、MobileNet、EfficientNet。复合缩放方法,深度可分离卷积

1267 篇文章 ¥199.90 ¥299.90
865 篇文章 ¥199.90 ¥299.90
本文介绍了深度学习中著名的卷积神经网络模型,包括AlexNet、VGG、ResNet、Inception、MobileNet和EfficientNet。VGG以小卷积核增加深度,减少参数;ResNet通过残差学习解决深度学习难题;Inception使用多尺度卷积增强特征多样性;MobileNet利用深度可分离卷积实现轻量化;EfficientNet则通过复合缩放优化性能与资源平衡。这些模型在图像识别、目标检测等领域各有优势,适用于不同计算资源限制的场景。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

目录

AlexNet、VGG、ResNet、Inception、MobileNet、EfficientNe

AlexNet

VGG

Visual Geometry Group 名称的由来

ResNet

Inception

MobileNet

ResNet、EfficientNet 优劣与应用场景

复合缩放方法(Compound Scaling)

EfficientNet 和MobileNet区别和应用

深度可分离卷积


AlexNet、VGG、ResNet、Inception、MobileNet、EfficientNe

AlexNet、VGG、ResNet、Inception、MobileNet和EfficientNet都是深度学习领域中著名的卷积神经网络模型,它们各自具有独特的特点和优势。

AlexNet

是较早的卷积神经网络模型之一,它在2012年的ImageNet图像分类比赛中取得了突破性的成绩。AlexNet由五个卷积层、三个全连接层组成,使用了ReLU激活函数和最大池化等技术

VGG

是一个深度卷积神经网络模型,其特点是采用非常小的卷积核(3x3)来增加网络的深度,同时减少了参数数量,降低了过拟合的风险。VGG网络结构简洁,每个卷积层后面都跟着一个ReLU激活函数和一个2

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值