大模型的参数数量与学习的知识数量之间

1332 篇文章 ¥199.90 ¥299.90
928 篇文章 ¥199.90 ¥299.90
731 篇文章 ¥199.90 ¥299.90

大模型的参数数量与学习的知识数量之间

大模型的参数数量与学习的知识数量之间呈现非线性、条件依赖的复杂关系,其本质是**「表达能力」与「知识编码效率」的动态博弈**。以下从五个维度拆解核心逻辑:

一、参数是知识的「载体容量」,但非唯一决定因素

  • 理论上限:参数数量决定模型能拟合的函数复杂度(VC维),1750亿参数的GPT-3理论上可存储约1.4TB浮点数(假设每个参数32位),但实际知识密度远低于此。
  • 隐性知识编码:参数更多存储模式关联而非显性事实。例如,GPT-4的参数不直接存“巴黎是法国首都”,而是通过Transformer权重编码“巴黎→国家→法国”的语言模式(类似大脑突触连接编码经验)。
  • 反例:T5-11B通过参数高效微调(Prefix Tuning)在某些任务上超越GPT-3 1750亿(如摘要生成),说明结构设计(如注意力层)比原始参数更影响知识提取效率

二、知识增长的「阈值效应」ÿ

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值