怎么实现动态提示词,并提升准确率

怎么实现动态提示词,并提升准确率

借助小模型实现动态提示词以更好完成任务的方法

基于规则的简单模型

  • 原理:制定一系列预定义规则,依据用户输入的内容匹配规则,进而生成提示词。该方法实现简单,适合处理特定场景下的任务。
  • 示例:在一个电影推荐聊天场景中,设定如下规则:若用户输入“喜剧”,则提示“开心麻花喜剧”“经典港式喜剧”;若输入“科幻”,则提示“星际穿越类科幻”“赛博朋克科幻”。

轻量级词向量模型

  • 原理:使用轻量级的词向量模型(如 Word2Vec)把词语转化为向量,再通过计算向量间的相似度,找出与用户输入词语相近的词作为提示词。
  • 示例:以电影推荐场景为例,先使用 Word2Vec 模型对大量电影相关文本进行训练,然后当用户输入“动作”时,计算“动作”与其他词语的向量相似度,将相似度高的词语(如“冒险”“枪战”)作为提示词。

小型预训练语言模型微调</

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值