LLM词编码机制:文字映射,词嵌入

1309 篇文章 ¥199.90 ¥299.90
905 篇文章 ¥199.90 ¥299.90
708 篇文章 ¥199.90 ¥299.90

LLM词编码机制:文字映射,词嵌入

词编码机制中,从文字映射到词嵌入,以及在高维空间编码的Python实现方式

整体流程概述

  1. 文字映射:把文本拆分成单个的词元(tokens),同时将这些词元映射为对应的整数ID
  2. 词嵌入:借助词嵌入层,把词元ID转换为高维向量
  3. 高维空间编码:利用嵌入向量开展后续任务,例如输入到神经网络里。

Python实现示例

这里使用transformers库来实现词编码和词嵌入,transformers库提供了丰富的预训练模型和工具。

import torch
from transformers import AutoTokenizer,<
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值