loss = -F.log_softmax(logits[:, -1, :], dim=1)[0, irrational_id]

1362 篇文章 ¥199.90 ¥299.90
952 篇文章 ¥199.90 ¥299.90
760 篇文章 ¥199.90 ¥299.90

loss = -F.log_softmax(logits[:, -1, :], dim=1)[0, irrational_id]

解释这行代码 loss = -F.log_softmax(logits[:, -1, :], dim=1)[0, irrational_id] 的具体含义和背后的数学原理。

1. 代码拆解与功能

这行代码的核心是计算负对数似然损失(Negative Log Likelihood Loss),用于引导模型生成特定标签(这里是“偏激”)。我们逐步拆解:

1.1 logits[:, -1, :]
  • logits:模型输出的原始预测分数,形状通常为 [batch_size, seq_len, vocab_size]
  • [:, -1, :]:取最后一个时间步(token)的预测分数,形状变为 [batch_size, voca
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值