Prompt Tuning”和“P-Tuning”区别 Prompt加上token进行优化 P-Tuning 对权重参数优化了 1. Prompt Tuning(提示调优) 核心思想: 不对预训练模型的原始参数进行调整,而是在输入侧添加可训练的连续向量(被称作软提示,Soft Prompt)。通过对这些软提示进行优化,从而引导模型产生预期的输出。 技术特点: 训练过程中,仅软提示的参数会被更新,预训练模型的权重保持不变。 软提示一般是连续的向量,并非自然语言形式。 可以理解为是一种轻量级的微调方式,在计算和存储方面的成本都比较低。 适用场景