Prompt Tuning与P-Tuning:优化策略大揭秘

1393 篇文章 ¥199.90 ¥299.90
983 篇文章 ¥199.90 ¥299.90
791 篇文章 ¥199.90 ¥299.90

Prompt Tuning”和“P-Tuning”区别

Prompt加上token进行优化

P-Tuning 对权重参数优化了

在这里插入图片描述

1. Prompt Tuning(提示调优)

  • 核心思想
    不对预训练模型的原始参数进行调整,而是在输入侧添加可训练的连续向量(被称作软提示,Soft Prompt)。通过对这些软提示进行优化,从而引导模型产生预期的输出。
  • 技术特点
    • 训练过程中,仅软提示的参数会被更新,预训练模型的权重保持不变。
    • 软提示一般是连续的向量,并非自然语言形式。
    • 可以理解为是一种轻量级的微调方式,在计算和存储方面的成本都比较低。
  • 适用场景
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值