ATPrompt方法:属性嵌入的文本提示学习

1427 篇文章 ¥199.90 ¥299.90
1018 篇文章 ¥199.90 ¥299.90
826 篇文章 ¥199.90 ¥299.90

ATPrompt方法:属性嵌入的文本提示学习

让视觉-语言模型更好地对齐图像和文本(包括未知类别)。
在这里插入图片描述

一、问题场景:传统方法的局限

假设你有一个模型,能识别图像中的物体并关联到文本标签(如“狗”“猫”)。

  • 传统方法
    用“软提示”(可学习的文本标签)和“硬类别标记”(如“[DOG]”)训练模型,让图像和已知类别(如“金毛犬”“波斯猫”)对齐。
    局限:遇到未知类别(如“薮猫”“爱尔兰猎狼犬”)时,模型无法关联,因为没学过这些标签。

  • ATPrompt的目标
    让模型通过通用属性(如“体型大/小”“毛发颜色”“耳朵形状”)作为桥梁,理解未知类别。
    例子

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

ZhangJiQun&MXP

等到80岁回首依旧年轻

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值