ATPrompt方法:属性嵌入的文本提示学习 让视觉-语言模型更好地对齐图像和文本(包括未知类别)。 一、问题场景:传统方法的局限 假设你有一个模型,能识别图像中的物体并关联到文本标签(如“狗”“猫”)。 传统方法: 用“软提示”(可学习的文本标签)和“硬类别标记”(如“[DOG]”)训练模型,让图像和已知类别(如“金毛犬”“波斯猫”)对齐。 局限:遇到未知类别(如“薮猫”“爱尔兰猎狼犬”)时,模型无法关联,因为没学过这些标签。 ATPrompt的目标: 让模型通过通用属性(如“体型大/小”“毛发颜色”“耳朵形状”)作为桥梁,理解未知类别。 例子