- 博客(130)
- 资源 (31)
- 收藏
- 关注
原创 Empowering Psychotherapy with Large Language Models: Cognitive Distortion Detection through Diagnosi
论文《Empowering Psychotherapy with Large Language Models: Cognitive Distortion Detection through Diagnosis of Thought Prompting》提出了一种名为诊断性思维(Diagnosis of Thought, DoT)的提示方法,旨在提升大语言模型(LLM)在心理治疗中认知扭曲检测任务中的表现。DoT框架通过三个主要阶段引导LLM对患者话语进行系统分析:主观性评估(区分话语中的客观事实与主观想法)
2025-05-11 00:06:44
26
原创 张 SoulChat2.0:心理咨询师优化:提示词优化;构建数据集微调LLM
张 SoulChat2.0 是华南理工大学未来技术学院 - 广东省数字孪生人重点实验室推出的心理咨询师数字孪生大语言模型项目,旨在解决现有心理健康大语言模型未充分考虑心理咨询师个人风格以及多轮对话数据混合微调导致回复不稳定的问题。项目通过构建高质量的心理咨询师数字孪生数据集 PsyDTCorpus,利用大五人格分析和先进语言模型总结技术,生成具有特定咨询师语言风格和疗法技术的多轮对话数据。数据集包含5000个单轮咨询样本,其中4760个用于训练,240个用于测试。模型选用 Qwen2-7b-Instruct
2025-05-10 17:37:33
123
原创 基于微信平台的智能心理咨询聊天机器人系统设计与实现
本文设计并实现了一款基于微信平台的智能心理咨询聊天机器人系统,旨在通过自然语言处理和情绪识别等技术提供便捷、个性化的心理咨询服务。系统采用模块化设计,包括微信交互、用户状态管理、核心功能及配置参数管理等模块,确保高效运行和用户体验。通过实验验证,系统在用户满意度和响应时间方面表现良好,满意度达80%,平均响应时间为15秒。未来工作将着重优化模型性能和增加情绪识别功能,以进一步提升系统效能,推动智能心理咨询技术的发展。
2025-05-10 11:41:30
53
原创 Agent Q: Advanced Reasoning and Learning for Autonomous AI Agents ; DPO:直接偏好优化
Agent Q框架旨在提升大语言模型(LLMs)在交互式多步推理任务中的表现,通过结合引导蒙特卡罗树搜索(MCTS)、自我批判机制和迭代微调,增强自主智能体的推理和决策能力。该框架将网络交互视为部分可观测马尔可夫决策过程(POMDP),并通过强化微调(RFT)和直接偏好优化(DPO)等方法优化模型策略。DPO损失函数通过最小化模型生成策略与参考策略在偏好对比较中的差异,提升模型在零样本任务中的性能。实验表明,Agent Q在WebShop和OpenTable等真实场景中显著提升了模型的成功率,零样本成功率从
2025-05-10 00:59:46
106
原创 损失函数与准确率的非线性关系解析
在机器学习中,损失函数(loss)和批次(batch)是训练模型时的关键概念。损失函数衡量模型预测值与真实值之间的差异,通常损失越小,模型预测越准确,准确率越高。然而,损失和准确率并非严格线性关系,训练初期损失可能迅速下降,而准确率提升较慢。常见的损失函数包括均方误差(MSE)、交叉熵损失和绝对值损失等,分别适用于回归和分类任务。 在训练过程中,批次大小(batch size)影响参数更新的频率。较小的批次(如batch=5)意味着更频繁的参数更新,而较大的批次则更新间隔较长。训练流程包括正向传播和反向传播
2025-05-10 00:25:13
134
原创 豆包:基于多模态交互的智能心理咨询机器人系统设计与效果评估——情感计算框架下的对话机制创新
本文提出了一种基于多模态交互的智能心理咨询机器人系统“豆包”,融合情感计算与动态对话管理,旨在解决全球心理健康需求激增与专业咨询师资源短缺的矛盾。系统采用“用户状态-情感响应-策略生成”三层模型,结合自然语言处理与异步交互技术,提供个性化情感支持。实验结果表明,系统在情感识别准确率(89.7%)、用户满意度(4.82/5)和对话连贯性(F1值0.85)等关键指标上显著优于基线模型。系统通过微信生态实现低成本部署,具备规模化应用潜力,为AI心理咨询的工程化应用提供了理论与技术支撑。未来研究可聚焦多模态融合与长
2025-05-10 00:04:16
502
原创 5级李克特量表:量化态度的黄金标准
5级李克特量表是一种广泛应用于心理学和社会科学的态度测量工具,通过5个等级(如“非常不同意”到“非常同意”)量化受访者对某一主题的同意程度或感受强度。其核心特征包括单维测量、量化分析以及操作简便性。量表结构通常由陈述句或问题组成,受访者根据自身感受选择对应等级,分值范围为1到5分。5级李克特量表适用于多种场景,如用户满意度调查、心理咨询效果评估等,并能通过描述性统计、相关性分析等方法进行数据分析。与其他量表相比,5级李克特量表在测量深度和易用性之间取得平衡,广泛应用于学术研究和实践调查中。
2025-05-09 12:04:07
139
原创 怎样使用BERT模型获取“中国首都”的词向量编码
要使用BERT模型获取“中国首都”的词向量编码,首先需要导入相关库并加载预训练的BERT模型和分词器。接着,对输入文本进行分词并将其转换为模型可接受的格式,如id序列。将处理后的输入传递给模型,获取词向量,通常取最后一层隐藏层的输出作为词向量。最终的输出形状为(1, 6, 768),其中1表示批次大小,6表示序列长度(包括特殊标记),768表示隐藏层维度。这一过程确保了文本能被模型高效处理,同时保留语义和结构信息。
2025-05-09 08:44:43
107
原创 高拟人化客服机器人显著提升用户接受度
高拟人化客服机器人显著提升用户接受度,且与真人客服无显著差异**,其作用通过**胜任感中介效应**实现;**购房动机具有调节作用**,自住动机下高拟人化更有效,投资动机下低拟人化更受认可。研究为平台设计提供策略:一般场景采用高拟人化,结合视觉、身份、言语线索优化;针对自住用户强化情感化设计,投资用户侧重理性信息支持。
2025-05-09 08:30:02
191
原创 机器人领域和心理学领域 恐怖谷 是什么
这种情感变化就像经历了一个山谷,从对机器人逐渐增加的好感,到在某个节点急剧下降,所以被称为“恐怖谷”。恐怖谷是一个在机器人领域和心理学领域备受关注的概念,由日本机器人专家森政弘于1970年提出。当机器人与人类的相似度达到一定程度时,
2025-05-08 13:00:39
405
原创 无实体对话式社交机器人 拟人化印象形成机制:基于多模态交互与文化适配的拓展研究
该研究通过严谨的实验设计,揭示了无实体对话机器**人拟人化对印象形成的积极影响及内在机制,**为理解智能传播时代的人机关系提供了新视角,也为AI对话系统的优化设计提供了理论依据。本研究在张放与徐子涵(2024)关于无实体对话机器人“反恐怖谷效应”的实验基础上,引入多模态交互维度与跨文化比较视角,通过2×2×2混合实验设计(拟人化程度×对话情境×文化背景),探究视觉、语音线索对人机印象形成的强化效应及文化适配机制。
2025-05-08 12:58:13
342
原创 Python `zip()` 函数是什么
是一个内置函数,其主要作用是将多个可迭代对象(像列表、元组、字符串等)中的元素一一对应地组合成元组,最终返回一个迭代器,这个迭代器会生成这些元组。函数接收了三个列表作为参数,将它们对应位置的元素组合成了包含三个元素的元组。中对应位置的元素,这样就能同时处理两个列表中对应位置的元素了。函数会以最短的可迭代对象的长度为准,多余的元素会被忽略。代表可变数量的可迭代对象,意味着你可以传入任意数量的。这两个列表中的元素按顺序配对,在每次循环时,生成的元组会被依次解包,分别赋值给。中的元素按顺序配对,形成了元组。
2025-05-08 12:23:51
31
原创 什么是:Word2Vec + 余弦相似度
什么是:Word2Vec + 余弦相似度示例文本基于Word2Vec的文本向量化计算余弦相似度Word2Vec不是基于Transformer架构的
2025-05-08 11:16:56
95
原创 什么是文本相似对比算法,原理是什么
什么是文本相似对比算法,原理是什么编辑距离算法余弦相似度算法词频向量确定:两个向量怎么获取的,向量长度:按长的句子出现词语数量确定其他常见且有效的文本相似对比算法 :J,accard相似度算法,Smith-Waterman算法
2025-05-08 11:13:07
180
原创 Paper2Code是什么:科学论文自动转换为可运行的代码
Paper2Code是韩国科学技术院和DeepAuto.ai联合推出的多Agent大语言模型(LLM)框架,旨在将机器学习领域的科学论文自动转换为可运行的代码仓库。
2025-05-07 23:04:15
65
原创 词编码模型和回答问题的LLM是否为同一个; 词编码模型和回答问题模型分开时:需要保证词嵌入维度一致吗
词编码模型和回答问题的LLM是否为同一个二者为同一模型的情况二者为不同模型的情况词编码模型和回答问题模型分开时:需要保证词嵌入维度一致吗需要保证词嵌入维度一致的原因特殊情况豆包采用什么模式一体化的设计架构模型的优势
2025-05-07 17:37:49
123
原创 LLM词编码机制:文字映射,词嵌入
文字映射:把文本拆分成单个的词元(tokens),同时将这些词元映射为对应的整数ID。词嵌入:借助词嵌入层,把词元ID转换为高维向量。高维空间编码:利用嵌入向量开展后续任务,例如输入到神经网络里。
2025-05-07 17:32:46
110
原创 LLM词编码机制:词映射
整体是一个二维数组,这是因为在处理批量输入时,每个子数组代表一个输入文本的编码。这里只有一个输入“中国首都”,所以只有一个子数组。用于区分不同句子的词元。在 BERT 中,通常用于处理两个句子的输入场景,例如问答任务中区分问题和答案。表示该位置是填充的,模型会忽略它。这里 array([[1, 1, 1, 1, 1, 1, 1]])表示该位置是真实的词元,模型在计算注意力机制时会考虑它;用于指示哪些词元是真实的输入,哪些是填充的。可能是分词时某些部分未在词表中找到对应。是将输入文本分词后,每个。
2025-05-07 17:27:42
42
原创 Unicode和UTF - 8主要有以下区别
- **Unicode**:是字符集 。它为世界上几乎所有的字符(包括各国文字、标点符号、特殊符号等)分配了唯一的编号,这个编号也叫码位、码点,**比如“中”字的Unicode码点是U+4E2D 。它规定了字符的抽象表示,只关注字符与数字编号的对应关系**,不涉及具体如何在计算机中存储和传输 。- **UTF - 8**:是编码规则 。它规定了如何将**Unicode中的码点转换为字节序列,也就是确定了字符在计算机中实际存储和传输时的二进制形式**。
2025-05-07 16:16:32
43
原创 不同大模型对提示词和问题的符号标识
花括号{}的定位:是编程和数据格式的通用符号,非大模型提示词的标准分隔符。核心建议简单任务:用自然语言+换行即可。复杂任务:根据模型特性选择符号(Claude用XML,GPT用###动态填充:用{}作为模板变量,但需在代码中预先格式化。通过合理选择符号并结合模型特性,可显著提升提示词的清晰度和模型响应的准确性。不存在绝对通用的格式,但可通过以下策略实现跨模型兼容基础结构:系统提示+用户输入,用分隔符(如###)分段。动态填充:代码中使用{}模板变量,预先格式化。示例引导。
2025-05-07 12:58:49
114
原创 总结七种提示优化方案的核心实现流程
1. Empty CoT2. CoT(Chain of Thought)3. SGDM(Stochastic Gradient Descent for Prompt)4. APE(Auto Prompt Evolution)5. APO(Auto Prompt Optimization)6. OPRO(Objective-Driven Prompt Optimization)7. PE2(Prompt Engineering Evolution)
2025-05-06 20:35:05
227
原创 帕累托最优提示 是什么
帕累托最优提示强调在多目标优化中,提示的调整不再存在“两全其美”的改进空间,体现了资源(如提示的语义、结构等)分配的一种极致平衡。
2025-05-06 20:14:47
71
原创 重要 提示词优化:检索历史提示确定方向→生成候选提示并控制修改幅度→基于准确率迭代优化
提示词优化:检索历史提示确定方向→生成候选提示并控制修改幅度→基于准确率迭代优化
2025-05-06 20:05:17
94
原创 LLM评估指标:WSC和WebNLG 是什么
WSC(Winograd Schema Challenge,维诺格拉德模式挑战) - **定义**:是一种评估人工智能常识推理能力的任务,通过特定句式的句子,让模型判断代词所指代的对象,考验模型对**语义、常识和语境的理解**。
2025-05-06 19:50:16
60
原创 提示词的 嵌入空间优化
提示词的嵌入空间优化,是指通过技术手段**调整提示词在低维向量空间(嵌入空间)**中的表示,使其更精准地捕捉语义信息、增强语义关联性,或适配特定任务需求,从而提升模型(如大语言模型)对提示词的理解与处理效果。例如,在自然语言处理任务中,优化后可使语义相近的提示词在嵌入空间中距离更近,语义差异大的提示词距离更远,便于模型更好地利用提示词的语义信息进行推理或生成。领域优化目标关键方法损失函数/技术核心价值NLP语义聚类与任务适配微调、对比学习、Prompt嵌入优化。
2025-05-06 19:46:48
62
原创 生成式人工智能技术在高校心理健康服务中的应用; 希尔的三阶段助人理论:探索、领悟和行动
生成式人工智能技术在高校心理健康服务中的应用; 希尔的三阶段助人理论:探索、领悟和行动
2025-05-06 17:24:02
114
原创 心理中:隐喻性信息是什么
隐喻是一种修辞手法,它将一个事物比作另一个事物,以此来暗示两者之间的相似性,进而传达出某种特定的。,而隐喻性信息就是蕴含在这种比喻关系中的深层信息。LLM(大语言模型)在一定程度上能够识别隐喻信息,但存在局限性。
2025-05-06 17:21:36
58
原创 UTF - 8和ASCII是什么; 在llm中将文本转为其他编码格式是否能提升LLM回答能力
因为LLM在处理文本时,会将输入的文本按照其内部已有的编码和处理机制进行转换和理解,外部编码格式的转换如果不涉及到对文本内容的实质性改变或优化,很难对模型的内在理解和回答能力产生直接影响。当然,如果在转换编码格式的过程中,对文本进行了一些预处理操作,如清理噪声、规范化文本、提取关键信息等,那么这些操作可能会间接地对LLM的回答能力产生积极影响,但这主要是预处理操作的作用,而不是编码格式转换本身的作用。在LLM(大型语言模型)中,将文本转为其他编码格式一般。
2025-05-06 12:53:14
124
原创 张 ,提示词进行编码输入; 怎么将文本转化为其他编码格式进行LLM提问回答效果更好
将文本转化为不同编码格式一般不会直接影响LLM的提问回答效果,因为LLM通常处理的是字符级或词级的输入,而不是特定的编码格式。不过,在将文本提供给LLM之前,进行一些预处理和编码转换可能有助于提高效率或适应特定的系统要求。
2025-05-06 12:51:00
380
原创 怎样通过API 实现python调用Chatgpt,gemini
# 可选参数:控制输出的随机性,值在 0 到 2 之间,默认 1 temperature=0.7, # 可选参数:控制输出的多样性,值在 0 到 1 之间,默认 1 top_p=0.8, # 可选参数:限制生成回复的最大令牌数 max_tokens=150, # 可选参数:生成多个候选回复,默认 1 n=2, # 可选参数:是否流式输出,默认 False stream=False, # 可选参数:停止生成回复的标记,可以是字符
2025-05-06 11:34:37
208
原创 OpenAI 的`response.choices[0]` 是什么; response的具体内容
对象是调用聊天完成 API 后得到的响应结果,它包含了模型生成的回复信息以及请求相关的元数据。
2025-05-06 10:56:41
102
原创 豆包多轮对话优化策略:上下文理解与记忆,意图识别,对话管理
豆包多轮对话优化策略:上下文理解与记忆,意图识别,对话管理 ; 通过这样的策略,我能够在一个对话窗口中实现多轮对话,根据用户的不断提问和反馈,提供准确、连贯且有针对性的回答,满足用户的需求。
2025-05-05 23:01:23
116
原创 基于思考过程评价的心理问题咨询对话记性评估
在心理问题咨询的对话场景中,传统记性评价多局限于对话结果的相似度计算,无法全面捕捉来访者及咨询师在对话过程中的思维动态。本文提出一种聚焦此对话场景的**记性评价**新方法,将**思考过程纳入评估范畴**。详细阐释其基于**认知心理学和信息加工理论**的原理,构建相应数学模型与公式。通过针对性实验,对比传统与新评价方法,验证新方法在精准评估对话记忆、辅助心理咨询效果提升方面的有效性,为心理问题咨询领域提供创新的记性评价视角与工具。
2025-05-05 22:38:41
116
原创 LLM提示词设计及多轮对话优化策略在心理健康咨询场景中的应用研究
本文针对大语言模型(LLM)在心理健康问题咨询对话场景中的应用,系统研究提示词设计方法及多轮对话优化策略。通过分析提示词核心原理,构建包含,并结合具体。通过模拟心理健康咨询对话进行实验,验证不同策略对的影响,为提升LLM在心理健康领域的应用效果提供理论与实践依据。
2025-05-05 22:33:57
120
原创 DeepWiki 是什么,怎么使用
DeepWiki 是Cognition Labs公司推出的一款AI驱动的智能工具,主要用于帮助开发者快速理解各种开源代码库。它能利用AI技术分析代码库,为GitHub仓库一键生成类似文档的wiki页面,还可回答开发者关于仓库的问题。打开浏览器,输入网址https://deepwiki.com/ ,进入DeepWiki主页,能看到搜索框和热门代码库列表。
2025-05-05 20:24:30
1409
原创 常见小模型的实现原理及使用示例:Android端
常见小模型的实现原理及使用示例:Android端线性模型决策树朴素贝叶斯小型神经网络模型蒸馏(用于得到小模型的技术)Whisper TinyMobileNetV3MTCNNMediaPipe Hands
2025-05-05 19:23:16
100
原创 马尔科夫决策过程是什么:未来状态转移和奖励仅依赖于当前状态和动作 ,与过去状态无关
马尔科夫决策过程是什么:未来状态转移和奖励仅依赖于当前状态和动作 ,与过去状态无关
2025-05-05 17:29:51
32
原创 RAGEN 简介:基于强化学习的智能体生成; StarPO框架:状态 - 思考 - 行动 - 奖励策略
RAGEN 简介:基于强化学习的智能体生成; StarPO框架:状态 - 思考 - 行动 - 奖励策略
2025-05-05 17:25:44
341
jd-windows_jar.zip
2019-09-09
jd_windows.zip
2019-09-09
Activity之间使用接口传值.zip
2019-07-30
mengxueping.zip
2019-07-26
sscomassistant.2.15.0.Installer.x64.exe
2019-06-19
DebugView 支持win10.rar
2019-05-24
一个非常强大的测试工具,给大家简单的介绍一下基本使用方法 入门篇,如若不懂,请重新学习小学语文,再来阅读,谢谢!!! 1、
2022-10-08
US_export_policy.jar local_policy.jar
2022-04-23
CAJViewer7.2.0.115.self.zip
2021-12-08
sokit-1.3.zip
2020-07-13
signapk.jar
2020-03-12
usb-serial-for-android-master.zip
2019-09-10
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人