学习笔记24--自动驾驶汽车硬件平台

本文介绍了自动驾驶汽车的硬件平台,包括传感器平台、计算平台和线控车辆平台。传感器部分详述了激光雷达、毫米波雷达、车载摄像头和GNSS系统的特点与应用。计算平台方面,提到了基于GPU、DSP、FPGA和ASIC的解决方案。线控车辆平台则涉及车辆的线控技术和通信总线。内容适合对自动驾驶感兴趣的初学者,探讨了技术基础和关键组件的作用。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本系列博客包括6个专栏,分别为:《自动驾驶技术概览》、《自动驾驶汽车平台技术基础》、《自动驾驶汽车定位技术》、《自动驾驶汽车环境感知》、《自动驾驶汽车决策与控制》、《自动驾驶系统设计及应用》,笔者不是自动驾驶领域的专家,只是一个在探索自动驾驶路上的小白,此系列丛书尚未阅读完,也是边阅读边总结边思考,欢迎各位小伙伴,各位大牛们在评论区给出建议,帮笔者这个小白挑出错误,谢谢!
此专栏是关于《自动驾驶技术概览》书籍的笔记。



1.自动驾驶汽车硬件平台

自动驾驶硬件平台直接决定了系统的感知能力、运算能力、功耗强度、可靠性等;自动驾驶硬件平台分为传感器平台、计算平台、线控车辆平台3部分;

1.1 传感器平台

自动驾驶常用车载传感器包括:雷达、车载摄像头、定位定姿传感器等;

1.1.1 激光雷达
  1. 激光雷达(LiDAR)具有较高的距离、角度、速度分辨率,抗干扰能力强,点云信息丰富,不易受光照条件影响,可用于全天工作,激光雷达多用于三维环境建模和同步定位与建图;
  2. 激光雷达分为:单线雷达和多线雷达;
    1. 单线雷达:获取二维数据,但无法获得高度信息;
    2. 多线雷达:可以获取三维数据,精度高于单线雷达;
    3. 主流的多线雷达:4线、8线、16线、32线、64线;

1

1.1.2 毫米波雷达

毫米波雷达的探测距离远,测速、测距精度高,可全天候工作,成本较低;毫米波雷达常用于驾驶辅助功能,如:自适应巡航控制、前方碰撞预警、紧急辅助制动等;
2

1.1.3 车载摄像头
  1. 车载摄像头分类:单目和双目摄像头;
    1. 单目摄像头:主要基于机器学习,对图像数据进行训练和学习,用于环境感知;
    2. 双目摄像头:基于视差原理测量驾驶环境,测距精度较高;
  2. 摄像头应用。
    1. 前置摄像头:一般安装在前挡风玻璃上方,感知行车前方环境、检测目标;
    2. 后摄像头;一般布置在车尾;
    3. 环视摄像头:一般安装在车辆前、后、左、右侧,实现360°环境感知;
1.1.4 GNSS系统
  1. GNSS信号容易受到楼宇、树荫等影响,导致定位漂移;
  2. GNSS更新频率低(10Hz),在车辆快速行驶时难以给出精准的实时定位;
  3. 惯性传感器(IMU)可以在短时间内提供稳定的位置更新,但是定位误差会随时间累积;
  4. GNSS通常辅助以惯性传感器用来增强定位的精度;这两种传感器通过卡尔曼滤波技术实现实时融合,可以实现导航设备的优势互补,提高定位精度和适用范围;

1.2 计算平台

自动驾驶系统各模块实时运行过程中,产生大量的数据;需要选择性能强劲的计算平台完成实时大规模数据处理任务,计算平台的性能对自动驾驶的安全性、可靠性、实时性很重要;目前主流的计算平台包括:基于GPU、DSP、FPGA、ASIC等方案的计算平台。

  1. 基于GPU的自动驾驶计算平台。
    英伟达公司(NVIDIA)的PX平台是基于GPU的自动驾驶计算平台,支持多路摄像头、激光雷达、超声波雷达、定位等感知设备输入;Drive PX Pegasus基于英伟达的CUDA GPU,内置4个AI处理器,其中:两个为Xavier SoC芯片,两个为独立GPU,用于强化深度学习和计算机视觉;
    3
  2. 基于DSP的自动驾驶计算平台
    德州仪器公司的TDA2x SoC是基于DSP的自动驾驶计算平台;该计算平台有两个浮点DSP内核C66x和4个专为视觉处理设计的完全可编程的视觉加速器,可实现各摄像头应用同步运行,用于车道保持、自适应巡航、目标检测等驾驶功能;同时,该计算平台可用于摄像头、雷达等感知传感器的数据融合处理;
  3. 基于FPGA的自动驾驶计算平台
    Altera公司的Cyclone V Soc是基于FPGA的自动驾驶计算平台,集成了基于ARM处理器的硬件处理器系统,具有有效的逻辑综合功能;该方案可为传感器融合提供优化,可结合分析来自多个传感器的数据以完成高度可靠的物体检测;
  4. 基于ASIC的自动驾驶计算平台
    Mobileye公司的Mobileye EyeQ5是基于ASIC的自动驾驶视觉芯片,Mobileye EyeQ5芯片装备了8枚多线程CPU内核,同时搭载了18枚Mobileye的视觉处理器;EyeQ5 SOC装备有4种异构的全编程加速器,对计算机视觉、信号处理和机器学习等算法进行了优化;

1.3 线控车辆平台

线控车辆平台包括:车辆线控和通信总线;

  1. 线控技术的主要特征:执行机构与操纵机构没有直接的机械连接,驾驶意图将转换成对应的电信号驱动执行机构精确运动;
  2. 基于线控技术,自动驾驶控制器可以通过通信总线发送响应驾驶动作指令,完成机械控制;
  3. 通信总线如:CAN、USB3.0、LIN等,用于实现数据和指令的有效传递;
自动驾驶汽车硬件系统概述.pdf 目前绝大多数自动驾驶研发车都是改装车辆,相关传感器加装到 车顶,改变车辆的动力学模型;改装车辆的刹车和转向系统,也缺乏 不同的工况和两冬一夏的测试。图中Uber研发用车是SUV车型自身 重心就较高,车顶加装的设备进一步造成重心上移,在避让转向的过 程中转向过急过度,发生碰撞时都会比原车更容易侧翻 硬件在环 司机在环 甚于模器仿真 基于车辆执行 基于实腭道 基于必要的硬件平台 软件在环 车辆在环 自动驾驶研发仿真测试流程 所以在自动驾驶中,安全是自动驾驶技术开发的第一天条。为了 降低和避免实际道路测试中的风险,在实际道路测试前要做好充分的 仿真、台架、封闭场地的测试验证。 软件在环( Software in loop),通过软件仿真来构建自动驾驶 所需的各类场景,复现真实世界道路交通环境,从而进行自动驾驶技 术的开发测试工作。软件在环效率取决于仿真软件可复现场景的程度。 对交通环境与场景的模拟,包括复杂交通场景、真实交通流、自然天 气(雨、雪、雾、夜晚、灯光等)各种交通参与者(汽车、摩托车、 自行车、行人等)。采用软件对交通场景、道路、以及传感器模拟仿 真可以给自动驾驶的环境感知提供卡富的输入可以对算法进行验证 和测试 硬件在环(Hard- ware in1oop),各种传感器类似人的眼睛和 耳朵,作为自动驾驶系统的感知部分,该部分的性能决定了自动驾驶 车辆能否适应复杂多变的交通环境。包括,摄像头、毫米波雷达、超 声波雷达、激光雷达。针对不同的传感器,硬件在环会根据不同的传 感器和环境因素来部署。 车辆在环( Vehicle in loop),车辆执行系统向传动系统发出 执行命令来控制车辆,在自动驾驶中取代了人类的手脚。自动驾驶系 统的执行控制优劣决定了车辆是否能够安仝舒适的行驶。车辆运行在 空旷的场地上,自动驾驶系统感知系统模拟的虚拟场景,自动驾驶系 统根据虚拟的场景发出控制指令,再通过传感器将车辆的实轨迹反 馈到虚拟环境中,实珌真车与虚拟环境的融合,从而进行车辆操控的 验证 司机在环( Driver in loop),基于实时仿真技术开发,结合驾 驶员的实际行为,可以实现对车辆和自动驾驶技术开发测试做出主观 的评价。可机在环,可以一方面获得司机的主观评价,另一方面可以 验证人机共驾驶的功能。 自动驾驶系统的硬件架构 就整体而言,汽车是个全社会化管理的产品,其固有的行业特点 是相对保守的。在人工智能的大潮下,面对造车新势力和消费者需求 变化的冲击,传统汽车行业渐进式的创新方法已经面临巨大的挑战。 急需改变传统的架构和方法不断创新。自动驾驶幣体的硬件架构不光 要考虑系统本身也要考虑人的因素 腰性 酒 司 全雪 快冒 计算单元 m 感知 决策 控制 自动驾驶的硬件架构 自动驾驶系统主要包含三个部分:感知、决策、控制。从整个 硬件的架构上也要充分考虑系统感知、决策、控制的功能要求。整 体设计和生产上要符合相关车规级标准,如IS026262、AECQ-100、 TS16949等相关认证和标准。目前L1、L2、ADAS系统的硬件架构体 系和供应链相对完善符合车规级要求。 感知层:依赖大量传感器的数据,分为车辆运动、环境感知、 驾驶员检测三大类。 车辆运动传感器:速度和角度传感器提供车辆线控系统的相关横 行和纵向信息。惯性导航+全球定位系统=组合导航,提供全姿态信息 参数和高精度定位信息。 环境感知传感器:负责环境感知的传感器类似于人的视觉和听觉, 如果没有环境感知传感器的支撑,将无法实现自动驾驶功能。主要依 靠激光雷达、摄像头、亳米波雷达的数据融合提供给计算单元进行算 法处理。w2X就是周围一切能与车辆发生关的事物进行通信,包括V2V 车辆通信技术、V2Ⅰ与基础设施如红绿灯的通信技术、V2P车辆与行 人的通信。 驾驶员监测传感器:基于摄像头的非接触式和基于生物电传感器 的接触式。通过方向盘和仪表台内集成的传感器,将驾驶员的面部细 节以及心脏、脑电等部位的数据进行收集,再根据这些部位数据变化, 判断驾驶员是否处于走神和疲劳驾驶状态。 计算单元部分:各类传感器采集的数据统一到计算单元处理,为 了保证自动驾驶的实时性要求,软件响应最大延迟必须在可接受的 围内,这对计算的要求非常高。目前主流的解决方案有基于GPU、FPGA ASIC等 车辆控制:自动驾驶需要用电信号控制车辆的转向、制动、油门 系统,其中涉及到车辆地盘的线控改装,目前在具备自适应巡航、紧 急制动、白动泊车功能的车上可以直接借用原车的系统,通过CAN总 线控制而不需要过度改装 警告系统:主要是通过声音、图像、振动提醒司机注意,通过HMI 的设计有效减少司机困倦、分心的行为。 、自动驾驶的传感器 光雷詁 围憬头 毫来述 组合导 自动驾驶的传感
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

FUXI_Willard

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值