本系列博客包括6个专栏,分别为:《自动驾驶技术概览》、《自动驾驶汽车平台技术基础》、《自动驾驶汽车定位技术》、《自动驾驶汽车环境感知》、《自动驾驶汽车决策与控制》、《自动驾驶系统设计及应用》,笔者不是自动驾驶领域的专家,只是一个在探索自动驾驶路上的小白,此系列丛书尚未阅读完,也是边阅读边总结边思考,欢迎各位小伙伴,各位大牛们在评论区给出建议,帮笔者这个小白挑出错误,谢谢!
此专栏是关于《自动驾驶技术概览》书籍的笔记。
1.自动驾驶汽车硬件平台
自动驾驶硬件平台直接决定了系统的感知能力、运算能力、功耗强度、可靠性等;自动驾驶硬件平台分为传感器平台、计算平台、线控车辆平台3部分;
1.1 传感器平台
自动驾驶常用车载传感器包括:雷达、车载摄像头、定位定姿传感器等;
1.1.1 激光雷达
- 激光雷达(LiDAR)具有较高的距离、角度、速度分辨率,抗干扰能力强,点云信息丰富,不易受光照条件影响,可用于全天工作,激光雷达多用于三维环境建模和同步定位与建图;
- 激光雷达分为:单线雷达和多线雷达;
- 单线雷达:获取二维数据,但无法获得高度信息;
- 多线雷达:可以获取三维数据,精度高于单线雷达;
- 主流的多线雷达:4线、8线、16线、32线、64线;
1.1.2 毫米波雷达
毫米波雷达的探测距离远,测速、测距精度高,可全天候工作,成本较低;毫米波雷达常用于驾驶辅助功能,如:自适应巡航控制、前方碰撞预警、紧急辅助制动等;
1.1.3 车载摄像头
- 车载摄像头分类:单目和双目摄像头;
- 单目摄像头:主要基于机器学习,对图像数据进行训练和学习,用于环境感知;
- 双目摄像头:基于视差原理测量驾驶环境,测距精度较高;
- 摄像头应用。
- 前置摄像头:一般安装在前挡风玻璃上方,感知行车前方环境、检测目标;
- 后摄像头;一般布置在车尾;
- 环视摄像头:一般安装在车辆前、后、左、右侧,实现360°环境感知;
1.1.4 GNSS系统
- GNSS信号容易受到楼宇、树荫等影响,导致定位漂移;
- GNSS更新频率低(10Hz),在车辆快速行驶时难以给出精准的实时定位;
- 惯性传感器(IMU)可以在短时间内提供稳定的位置更新,但是定位误差会随时间累积;
- GNSS通常辅助以惯性传感器用来增强定位的精度;这两种传感器通过卡尔曼滤波技术实现实时融合,可以实现导航设备的优势互补,提高定位精度和适用范围;
1.2 计算平台
自动驾驶系统各模块实时运行过程中,产生大量的数据;需要选择性能强劲的计算平台完成实时大规模数据处理任务,计算平台的性能对自动驾驶的安全性、可靠性、实时性很重要;目前主流的计算平台包括:基于GPU、DSP、FPGA、ASIC等方案的计算平台。
- 基于GPU的自动驾驶计算平台。
英伟达公司(NVIDIA)的PX平台是基于GPU的自动驾驶计算平台,支持多路摄像头、激光雷达、超声波雷达、定位等感知设备输入;Drive PX Pegasus基于英伟达的CUDA GPU,内置4个AI处理器,其中:两个为Xavier SoC芯片,两个为独立GPU,用于强化深度学习和计算机视觉;
- 基于DSP的自动驾驶计算平台
德州仪器公司的TDA2x SoC是基于DSP的自动驾驶计算平台;该计算平台有两个浮点DSP内核C66x和4个专为视觉处理设计的完全可编程的视觉加速器,可实现各摄像头应用同步运行,用于车道保持、自适应巡航、目标检测等驾驶功能;同时,该计算平台可用于摄像头、雷达等感知传感器的数据融合处理; - 基于FPGA的自动驾驶计算平台
Altera公司的Cyclone V Soc是基于FPGA的自动驾驶计算平台,集成了基于ARM处理器的硬件处理器系统,具有有效的逻辑综合功能;该方案可为传感器融合提供优化,可结合分析来自多个传感器的数据以完成高度可靠的物体检测; - 基于ASIC的自动驾驶计算平台
Mobileye公司的Mobileye EyeQ5是基于ASIC的自动驾驶视觉芯片,Mobileye EyeQ5芯片装备了8枚多线程CPU内核,同时搭载了18枚Mobileye的视觉处理器;EyeQ5 SOC装备有4种异构的全编程加速器,对计算机视觉、信号处理和机器学习等算法进行了优化;
1.3 线控车辆平台
线控车辆平台包括:车辆线控和通信总线;
- 线控技术的主要特征:执行机构与操纵机构没有直接的机械连接,驾驶意图将转换成对应的电信号驱动执行机构精确运动;
- 基于线控技术,自动驾驶控制器可以通过通信总线发送响应驾驶动作指令,完成机械控制;
- 通信总线如:CAN、USB3.0、LIN等,用于实现数据和指令的有效传递;