【自动驾驶硬件组成】

本文详细介绍了自动驾驶汽车所需的关键硬件,包括感知传感器(摄像头、激光雷达、毫米波雷达和超声波雷达)的原理和应用场景,定位技术(GNSS、INS、视觉SLAM)的协同工作,以及控制单元和通信模块的作用。这些硬件协同工作,通过人工智能技术实现自动驾驶的各种功能。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >


前言

提示:这里可以添加本文要记录的大概内容:


提示:以下是本篇文章正文内容,下面案例可供参考

硬件组成

自动驾驶需要的硬件通常包括以下几个方面:

感知传感器:包括摄像头、激光雷达、毫米波雷达和超声波等传感器,用于获取车辆周围环境信息以及检测障碍物。

定位传感器:包括GPS定位、惯性导航系统(INS)和视觉定位等技术,用于确定车辆当前位置和运动状态。

控制单元:包括车载计算机和控制器,用于处理传感器数据并生成可执行的控制指令,控制车辆行驶。

通信模块:包括WiFi、蜂窝网络等通信技术,用于车辆与外部交互,例如获取实时地图数据、远程监控和软件更新等。

电源系统:包括电池和电机等组成的驱动系统,用于提供车辆动力和运行所需的能量。

感知传感器

摄像头camera

  • 作用
    通过拍摄周围环境的图像,获取道路标志、交通信号灯、车辆、行人等信息。摄像头可以提供高分辨率的视觉信息,但容易受到光照、天气等因素影响。
  • 实现原理
    通过图像传感器将光信号转换为数字信号,再由处理器对图像进行矫正、降噪、特征提取等处理。

数据录制

大小/时长1s1min1h
1M(1080 * 1080 )33M2002M117G
2M(1080 * 2160 )66M4004M234G
4M( 2160 * 2160 )130M8009M469G
8M(3840 * 2160 )237M13.9G834G
14M(3840 * 3840 )421M24.6G1.44T

1个camera,帧率为10,1秒录制的数据为1080*1080*3*10/1024/1024=33M,如果是800万像素的摄像头,单个camera一秒则产生237M的数据,10个摄像头一秒产生2.3G的数据,而且这还没有算上雷达数据的录制。所以说对于自动驾驶系统,1秒产生的数据是庞大的,对系统图像处理能力、系统带宽都有极高的要求,如果需要录制数据,保存硬盘的话,硬盘数据读写也会占用较高的CPU,同时对数据存储速度有较高的要求。而且这些录制完的数据还要上传到数据中心,最后进行标注处理,何以想象数据的宝贵。理想情况下,一块基于PCIE 3.0 * 4的企业级Nvme硬盘,读写速度是3GB/s,目前企业级硬盘容量大概为3.5T、7T两种,如果使用车规级硬盘,则价格更加昂贵。当然目前大部分车企保存的camera数据都是经过数据压缩之后,使用jpeg压缩后的数据将会使总的数据量少了一个数量级别,大大减小存储压力。从优化方面来说,数据压缩可以使用GPU,数据存储可以使用SPDK,经过GPU压缩后的数据直接DMA到NVme硬盘进行存储,可以大大得降低CPU的使用,极大的提高系统性能。

激光雷达Millimeter wave Lidar

  • 作用
    利用激光束扫描周围环境,获取距离、方向和反射强度等信息,可以生成高精度的三维点云地图。激光雷达具有高精度且不受光照影响的优势,但成本相对较高。波长:1064纳米(近红外线),频率:280 THz
  • 实现原理
    利用激光器发射脉冲激光束,激光束在扫描镜的反射下扫描周围环境,接收器接收反射回来的激光信号,通过测量激光束的时间和强度信息,计算出物体的位置和形状。
  • 使用场景
    适合在高速公路等开阔道路上使用,对于高精度的地图制作以及道路上复杂场景的感知具有重要作用。
  • 优点
    测量精度高、无需环境光、适应各种天气、数据处理简单。
  • 缺点
    价格昂贵、重量大、易受污染和振动影响,容易受反射面影响,雨雪天气表现差

毫米波雷达Radar

  • 作用
    利用微波辐射扫描周围环境,获取物体的位置、速度和方向等信息。毫米波雷达可以在恶劣天气和低光照条件下工作,但空间分辨率相对较低。波长:1-10毫米;频率:30-300 GHz
  • 实现原理
    利用微波辐射源向周围环境发送微波信号,接收器接收反射回来的微波信号并测量信号的时间延迟和频率变化,从而计算出物体的位置和速度。
  • 使用场景
    适合在城市道路等复杂环境下使用,提供可靠的测距和障碍物检测
  • 优点
    天气条件不受限制、对目标的探测能力强、价格相对较低。
  • 缺点
    空间分辨率不够高、灵敏度有限、不能提供图像信息。

超声波雷达Ultrasonic radar

  • 作用
    利用超声波探测周围环境的障碍物,可以提供近距离的测量和检测,常用于倒车雷达等应用。但超声波的测距精度和范围有限。波长:0.01-10厘米;频率:20 kHz-10 MHz
  • 实现原理
    利用超声波发射器发射超声波,超声波碰到障碍物后反射回来,接收器接收反射回来的超声波信号,并通过测量信号的时间延迟计算出距离。
  • 使用场景
    适合在低速行驶或者特定任务中使用,如**停车、缓慢拐弯(慢速场景)**等。
  • 优点
    成本低、体积小、使用稳定。
  • 缺点
    精度有限、受环境影响较大、不能提供图像信息。

总体而言,激光雷达、毫米波雷达和超声波传感器各具优势,可以相互补充,实现全方位的环境感知。

定位传感器

在自动驾驶领域中,定位传感器用于确定车辆的位置和朝向。常见的定位传感器包括全球卫星定位系统(GNSS)、惯性导航系统(INS)、视觉SLAM等。它们的作用、区别以及如何相互协调如下:

GNSS

作用:通过接收全球卫星定位系统(GPS、GLONASS等)信号,计算出车辆当前的位置和朝向。

区别:GNSS具有全球覆盖、无需外部参考的优点,但在城市峡谷等信号遮挡较多的地区精度可能较低。

INS

作用:利用加速计、陀螺仪等惯性测量单元,测量车辆的加速度、角速度等信息,计算出车辆的位置和姿态。

区别:INS具有高精度、不受信号遮挡影响的优势,但会因为误差积累导致位置漂移。

视觉SLAM

作用:通过车载摄像头等传感器,获取周围环境的图像信息,并使用SLAM算法(同时定位与地图构建)进行实时定位和地图构建。

区别:视觉SLAM可以提供高精度的定位和地图,但容易受到光照、天气等因素的影响。

在自动驾驶系统中,这些定位传感器通常会结合使用,相互协调,以提供更准确的位置和姿态信息。例如,可以将GNSS和INS相互校准,利用INS的高精度修正GNSS的误差,并利用视觉SLAM对定位进行增强。同时,在车辆行驶过程中,需要实时更新地图和定位信息,提高定位精度和鲁棒性。

控制单元

自动驾驶域控制器和Soc芯片是两种不同的技术。

域控制器

自动驾驶域控制器是一个基于车辆控制与传感器数据融合、计算机视觉、机器学习等技术的控制器系统。它主要作用是将车辆传感器采集的数据进行处理和分析,并基于车辆控制策略生成相关的控制命令,从而让车辆实现自主驾驶。自动驾驶域控制器通常包含多个处理单元(soc+mcu)和外设接口,可以通过标准的通信协议与车载计算机、传感器、执行器等多种组件进行连接和通信。

Soc芯片

而Soc芯片则是一种基于半导体技术的集成电路芯片,它集成了处理器CPU、GPU、内存、输入/输出接口、通信接口等多种基本功能。Soc芯片通常具有高度的可集成性和可扩展性,并且在功耗、性能、体积等方面都有明显的优势,可以满足不同领域的应用需求。

在自动驾驶领域,Soc芯片可以作为自动驾驶域控制器的基础芯片,提供更加强大的处理能力、更高效的计算能力和更完善的外设接口,从而提高自动驾驶系统的性能和可靠性。

Soc芯片和CPU、GPU的主要区别在于功能和设计。

CPU和GPU

  • Soc芯片是指系统级芯片,配备了多个单独的功能模块,如CPU、GPU、内存控制器、网络接口控制器等。这些模块都在同一个芯片上,由一个中央控制器协调工作。这种设计可以节省空间和功耗,同时提高性能和可靠性。

  • CPU和GPU是处理器,用于执行计算任务。CPU主要用于执行通用计算任务,如文本处理、数据库管理、文件压缩等,而GPU主要用于处理图形和影像任务,如3D渲染、视频编码和解码等。CPU和GPU通常是分开的芯片,将它们合并到一个Soc芯片中可以提高性能和功耗效率。

总之,Soc芯片和CPU、GPU的区别在于功能和设计。Soc芯片集成了多个功能模块,可以同时执行多个任务,而CPU和GPU都是专用处理器,用于处理不同的计算任务。

通信模块

在自动驾驶领域中,常见的通信模块包括4G/5G、局域网、WiFi和车路协同通信(V2X),它们的作用、区别以及如何相互协调如下:

4G/5G

作用:利用移动通信网络进行车辆之间或车辆与基础设施之间的通信,可以提供高速数据传输和广阔覆盖面。

区别:4G/5G通信具有高速率、广域覆盖等特点,但信号受电磁干扰、建筑物等障碍物影响较大。

局域网

作用:通过车内局域网进行车辆内部各个模块之间的通信,例如感知、控制、娱乐等。

区别:局域网通信具有低延迟、高可靠性等特点,但传输距离较短,仅适用于车内通信。

WiFi

作用:通过车载WiFi接入点实现车辆内外的无线通信,例如互联网接入、软件更新等。

区别:WiFi通信具有高速率、低成本等特点,但信号受环境因素影响较大。

车路协同通信(V2X)

作用:车路协同通信是指车辆与基础设施之间进行通信,例如交通信号灯、路边单元等,可以提供实时的路况信息、路径规划等服务。

区别:车路协同通信具有传输距离远、传输稳定的优点,但需要依赖基础设施的部署和维护。

在自动驾驶系统中,这些通信模块通常会结合使用,相互协调,以提供更全面的通信服务。例如,在城市道路等复杂环境下,车辆可以通过车载通信共享实时的位置、速度等信息,避免碰撞风险;同时,利用车路协同通信,车辆可以接收实时的交通灯状态、施工信息等,提高路径规划的精度和鲁棒性。在具体实现中,需要考虑通信协议、安全机制、网络拓扑等因素,以确保通信的可靠性和安全性。


总结

这些硬件协同工作,通过深度学习、计算机视觉和自然语言处理等人工智能技术,实现自动驾驶中的各种功能。例如感知环境、规划路径、决策控制、交互沟通等。对于自动驾驶技术的不同级别,需要使用的硬件和功能也有所不同。

自动驾驶汽车硬件系统概述.pdf 目前绝大多数自动驾驶研发车都是改装车辆,相关传感器加装到 车顶,改变车辆的动力学模型;改装车辆的刹车和转向系统,也缺乏 不同的工况和两冬一夏的测试。图中Uber研发用车是SUV车型自身 重心就较高,车顶加装的设备进一步造成重心上移,在避让转向的过 程中转向过急过度,发生碰撞时都会比原车更容易侧翻 硬件在环 司机在环 甚于模器仿真 基于车辆执行 基于实腭道 基于必要的硬件平台 软件在环 车辆在环 自动驾驶研发仿真测试流程 所以在自动驾驶中,安全是自动驾驶技术开发的第一天条。为了 降低和避免实际道路测试中的风险,在实际道路测试前要做好充分的 仿真、台架、封闭场地的测试验证。 软件在环( Software in loop),通过软件仿真来构建自动驾驶 所需的各类场景,复现真实世界道路交通环境,从而进行自动驾驶技 术的开发测试工作。软件在环效率取决于仿真软件可复现场景的程度。 对交通环境与场景的模拟,包括复杂交通场景、真实交通流、自然天 气(雨、雪、雾、夜晚、灯光等)各种交通参与者(汽车、摩托车、 自行车、行人等)。采用软件对交通场景、道路、以及传感器模拟仿 真可以给自动驾驶的环境感知提供卡富的输入可以对算法进行验证 和测试 硬件在环(Hard- ware in1oop),各种传感器类似人的眼睛和 耳朵,作为自动驾驶系统的感知部分,该部分的性能决定了自动驾驶 车辆能否适应复杂多变的交通环境。包括,摄像头、毫米波雷达、超 声波雷达、激光雷达。针对不同的传感器,硬件在环会根据不同的传 感器和环境因素来部署。 车辆在环( Vehicle in loop),车辆执行系统向传动系统发出 执行命令来控制车辆,在自动驾驶中取代了人类的手脚。自动驾驶系 统的执行控制优劣决定了车辆是否能够安仝舒适的行驶。车辆运行在 空旷的场地上,自动驾驶系统感知系统模拟的虚拟场景,自动驾驶系 统根据虚拟的场景发出控制指令,再通过传感器将车辆的实轨迹反 馈到虚拟环境中,实珌真车与虚拟环境的融合,从而进行车辆操控的 验证 司机在环( Driver in loop),基于实时仿真技术开发,结合驾 驶员的实际行为,可以实现对车辆和自动驾驶技术开发测试做出主观 的评价。可机在环,可以一方面获得司机的主观评价,另一方面可以 验证人机共驾驶的功能。 自动驾驶系统的硬件架构 就整体而言,汽车是个全社会化管理的产品,其固有的行业特点 是相对保守的。在人工智能的大潮下,面对造车新势力和消费者需求 变化的冲击,传统汽车行业渐进式的创新方法已经面临巨大的挑战。 急需改变传统的架构和方法不断创新。自动驾驶幣体的硬件架构不光 要考虑系统本身也要考虑人的因素 腰性 酒 司 全雪 快冒 计算单元 m 感知 决策 控制 自动驾驶硬件架构 自动驾驶系统主要包含三个部分:感知、决策、控制。从整个 硬件的架构上也要充分考虑系统感知、决策、控制的功能要求。整 体设计和生产上要符合相关车规级标准,如IS026262、AECQ-100、 TS16949等相关认证和标准。目前L1、L2、ADAS系统的硬件架构体 系和供应链相对完善符合车规级要求。 感知层:依赖大量传感器的数据,分为车辆运动、环境感知、 驾驶员检测三大类。 车辆运动传感器:速度和角度传感器提供车辆线控系统的相关横 行和纵向信息。惯性导航+全球定位系统=组合导航,提供全姿态信息 参数和高精度定位信息。 环境感知传感器:负责环境感知的传感器类似于人的视觉和听觉, 如果没有环境感知传感器的支撑,将无法实现自动驾驶功能。主要依 靠激光雷达、摄像头、亳米波雷达的数据融合提供给计算单元进行算 法处理。w2X就是周围一切能与车辆发生关的事物进行通信,包括V2V 车辆通信技术、V2Ⅰ与基础设施如红绿灯的通信技术、V2P车辆与行 人的通信。 驾驶员监测传感器:基于摄像头的非接触式和基于生物电传感器 的接触式。通过方向盘和仪表台内集成的传感器,将驾驶员的面部细 节以及心脏、脑电等部位的数据进行收集,再根据这些部位数据变化, 判断驾驶员是否处于走神和疲劳驾驶状态。 计算单元部分:各类传感器采集的数据统一到计算单元处理,为 了保证自动驾驶的实时性要求,软件响应最大延迟必须在可接受的 围内,这对计算的要求非常高。目前主流的解决方案有基于GPU、FPGA ASIC等 车辆控制:自动驾驶需要用电信号控制车辆的转向、制动、油门 系统,其中涉及到车辆地盘的线控改装,目前在具备自适应巡航、紧 急制动、白动泊车功能的车上可以直接借用原车的系统,通过CAN总 线控制而不需要过度改装 警告系统:主要是通过声音、图像、振动提醒司机注意,通过HMI 的设计有效减少司机困倦、分心的行为。 、自动驾驶的传感器 光雷詁 围憬头 毫来述 组合导 自动驾驶的传感
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

自动驾驶小哥

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值