机器学习中的有监督学习,无监督学习,半监督学习,强化学习。
参考:https://www.cnblogs.com/yxysuanfa/p/6749011.html
http://www.sohu.com/a/147695302_390227
https://blog.csdn.net/aliceyangxi1987/article/details/73327378
有监督学习:通过已有的一部分输入数据与输出数据之间的关系,生成一个函数,将输入映射到合适的输出,比如分类。
训练步骤:数据集的创建和分类 → 训练 → 验证 → 使用
广泛使用的分类器有:人工神经网络、支持向量机,K最近邻算法(KNN),高斯混合模型、朴素贝叶斯法方法、决策树和径向基函数分类。
无监督学习:是人工智能网络的一种算法。其目的是去对原始资料进行分类,以便了解资料内部结构。有别于监督式学习网络,无监督式学习网络在学习时并不知道其分类结果是否正确,亦即没有受到监督式增强(告诉它何种学习是正确的)。其特点是仅对此种网络提供输入范例。
无监督学习的方法:自编码、主成分分析、随机森林,K均值聚类。
半监督学习:半监督学习在训练阶段结合了大量未标记的数据和少量标签数据。与使用所有标签数据的模型相比,使用训练集的训练模型在训练时可以更为准确,而且训练成本更低。
强化学习:强化学习是机器学习的一个重要分支,是多学科多领域交叉的一个产物,它的本质是解决 decision making 问题,即自动进行决策,并且可以做连续决策。它主要包含四个元素,agent,环境状态,行动,奖励, 强化学习的目标就是获得最多的累计奖励。