【数据聚类|深度聚类】A Survey of Deep Graph Clustering: Taxonomy, Challenge, Application, and Open Resource综述论

在这里插入图片描述


Abstract

在这里插入图片描述

图聚类旨在将图中的节点划分为几个不同的簇,是一项基础但具有挑战性的任务。借助深度学习强大的表示能力,深度图聚类方法在近年取得了巨大成功。然而,相应的调查论文相对稀缺,有必要对这一领域进行总结。出于这一动机,我们进行了深度图聚类的全面调查

  • 首先,我们介绍了该领域的公式化定义、评估和发展
  • 其次,基于四个不同的标准,包括图类型、网络架构、学习范式和聚类方法,提出了深度图聚类方法的分类法
  • 第三,我们通过广泛的实验仔细分析了现有方法,并总结了从五个角度出发的挑战和机遇,包括图数据质量、稳定性、可扩展性、区分能力和未知簇数量
  • 此外,介绍了深度图聚类方法在计算机视觉、自然语言处理、推荐系统、社交网络分析、生物信息学和医学
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

快乐江湖

创作不易,感谢支持!

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值