偏微分题目的解法

若文中公式无法正常显示,请前往我的博客阅读:DearXuan的博客-偏微分题目的解法

介绍

偏微分是考研数学里的小重点,通常在题干中就能很明显看到偏导数。这种题目一般会有两个小题,且第一题往往送分题,通常是求某个复合函数的偏导,直接用复合函数的求导法则即可得到答案。第二题通常是求原函数,一般来说会用到第一小题的结论,通常解法是对第一小题得到的答案求不定积分,此时积分结果里会包含另一个参数的函数,再通过题目给定条件,求出这个参数的函数

例题1

设函数的全微分为,(a,b为常数),且,求

本题给的是全微分,但是可以看成两个偏微分,并且较为基础,所以放在第一题

直接对两个偏微分求不定积分,可以得到原函数。注意对x积分时,将y看作常数,因此最后的实际上应该写作

显然两者是同一个函数,因此对应的项的系数也相同,即,对x求偏导,得到,故

例题2

设可微函数满足,且,若
(1).求
(2).求的极值

本题的第一题较为简单,在没有提示的情况下第二题较难,但是有了第一题的结论,第二题也较容易想到解法

先看第一题,这是经典的复合函数求导,可以直接得到答案

将第一题得到的答案对x积分,得到

且有,所以,后面的极值不属于本文范围,这里直接给出最终答案:为极小值

例题3

设函数具有二阶连续偏导数,且满足等式,确定的值,使等式在变换下简化为

本题是早年的考研题,看似很复杂,实际上原理及其简单,就是把原本对的偏导转换成的偏导,但是计算量较大,且很容易算错

先求出一阶偏导,再求一次导,得到二阶偏导

代入原等式,得到

例题4

设函数具有2阶连续导数,满足,若,求函数表达式

本题初看毫无头绪,但是注意到题目给出了两个二阶偏导的和,因此我们先要想办法得到这两个偏导

,所以,此时本题变成了求解微分方程,这里直接给出最终答案

例题5

已知可微函数满足,且
(1). 记,求
(2). 求的表达式和极值

第一题较为简单,直接顺着题目思路算下去即可

有了第一题的结论,我们就能得到原函数,而又有,所以,即

后面的极值不属于本文范围,这里直接给出最终答案:为极小值

  • 1
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论
好的,针对你的问题,我可以给你一些思路和代码示例。 一维抛物型偏微分方程可以表示为: $$\frac{\partial u}{\partial t}=a\frac{\partial^2 u}{\partial x^2}+f(x,t)$$ 其中,$a$ 是常数,$f(x,t)$ 是已知函数。 我们可以采用差分方法来解决这个问题。具体步骤如下: 1. 离散化时间和空间。 设时间步长为 $\Delta t$,空间步长为 $\Delta x$,则有: $$t_n=n\Delta t$$ $$x_i=i\Delta x$$ 2. 使用中心差分法对空间导数进行离散化。 $$\frac{\partial^2 u}{\partial x^2}\approx\frac{u_{i+1}-2u_i+u_{i-1}}{(\Delta x)^2}$$ 3. 使用向前差分法对时间导数进行离散化。 $$\frac{\partial u}{\partial t}\approx\frac{u_i^{n+1}-u_i^n}{\Delta t}$$ 4. 将离散化后的方程带入原方程,得到差分方程。 $$\frac{u_i^{n+1}-u_i^n}{\Delta t}=a\frac{u_{i+1}^n-2u_i^n+u_{i-1}^n}{(\Delta x)^2}+f_i^n$$ 5. 将差分方程转化为递推式。 $$u_i^{n+1}=u_i^n+\frac{a\Delta t}{(\Delta x)^2}(u_{i+1}^n-2u_i^n+u_{i-1}^n)+\Delta t f_i^n$$ 6. 设置边界条件,进行数值计算。 这里给出一个简单的 MATLAB 代码示例,你可以根据自己的需要进行修改和优化: ```matlab % 初始化参数 a = 1; T = 0.1; L = 1; M = 100; N = 1000; dx = L/M; dt = T/N; % 初始化网格 x = 0:dx:L; t = 0:dt:T; u = zeros(M+1, N+1); % 设置初始条件和边界条件 u(:,1) = sin(pi*x); u(1,:) = 0; u(M+1,:) = 0; % 进行数值计算 for n = 1:N for i = 2:M u(i,n+1) = u(i,n) + a*dt/dx^2*(u(i+1,n)-2*u(i,n)+u(i-1,n))+dt*f(x(i),t(n)); end end % 绘制结果 mesh(t,x,u') xlabel('时间') ylabel('空间') zlabel('解') ``` 其中,$f(x,t)$ 是已知函数,可以根据实际情况进行设定。 另外,需要注意的是,差分解法的稳定性和收敛性与时间步长和空间步长有关,需要根据实际情况进行调整。

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

Dear_Xuan

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值