引言
在使用 DeepSeek Chat 时,用户可以直接上传 PDF、Word、Excel、PPT、图片 等文件,并基于文件内容进行问答。这一功能看似简单,但背后涉及复杂的 文件解析、语义理解、信息检索和大模型推理 流程。
那么,DeepSeek 是如何处理这些文件的?是否像传统 RAG(检索增强生成)系统一样,先进行向量嵌入+数据库存储,再召回相关信息?还是采用了更高效的实时处理方式?
本文将深入探讨 DeepSeek Chat 在文件上传与问答背后的底层处理逻辑,并对比其与传统 RAG 系统的异同。
1. 文件预处理:从原始文件到结构化数据
当用户上传文件后,DeepSeek 首先会进行文件解析,提取可处理的文本或图像信息。
1.1 文件类型识别与解析
-
文本类文件(PDF/TXT/Word/PPT):
-
使用专用库(如
PyPDF2
、docx-parser
、python-pptx
)提取文字内容。 -
若 PDF 包含扫描版文字,则调用 OCR(光学字符识别) 技术转换。
-
-
表格类文件(Excel/CSV):
-
解析表格结构,可能转换为 Markdown 或结构化 JSON,便于模型理解。
-
-
图片/图表(PNG/JPG/PDF内嵌图):
-
使用 多模态模型(如 CLIP、GPT-4V) 进行图像识别,生成文字描述。
-
1.2 分块(Chunking)
由于大语言模型(LLM)有上下文长度限制(如 DeepSeek-V3 支持 128K tokens),长文本会被切分成合理大小的片段(如每块 512-2048 tokens),同时尽量保持语义连贯性。
示例:
一篇 50 页的 PDF 可能被拆分成多个小节,每个小节包含若干段落,并附带元信息(如“第3页,第二节”)。
2. 内容理解:动态嵌入 vs. 向量数据库
传统 RAG(检索增强生成)系统通常采用以下流程:
-
嵌入(Embedding):使用模型(如
bge-small
)将文本转换为向量。 -
存储:向量存入数据库(如 FAISS、Milvus)。
-
检索:用户提问时,计算问题向量与数据库的相似度,召回相关内容。
但 DeepSeek Chat 可能采用更高效的动态处理策略:
2.1 实时嵌入 + 动态召回
-
对于临时上传的文件,可能不会预存向量,而是:
-
用户提问时,实时对文件分块进行嵌入(Embedding)。
-
计算问题与文件片段的相似度,动态筛选最相关部分。
-
仅将关键内容 输入大模型生成答案。
-
2.2 混合策略(缓存优化)
-
对于高频访问或大型文件,可能会缓存嵌入结果,避免重复计算。
-
但大多数情况下,用户会话结束后,文件数据会被清除,符合隐私要求。
2.3 多模态内容联合理解
-
如果上传的文件包含 图片+文字(如带图表的 PPT),系统会:
-
用视觉模型解析图像,生成描述(如“折线图显示2023年销售额增长20%”)。
-
结合文本内容,综合理解用户问题(如“请总结这份报告的趋势”)。
-
3. 用户查询与信息召回
当用户提问涉及文件内容时,DeepSeek 会执行以下步骤:
3.1 问题分析与语义匹配
-
嵌入用户问题(如转换为 768 维向量)。
-
计算与文件内容的相似度(如余弦相似度),召回最匹配的段落。
3.2 上下文组装
系统会构建一个增强提示(Prompt),格式可能如下:
[用户问题]
[相关文件片段1](来源:PDF 第5页)
[相关表格数据](来源:Excel 表2)
[图片描述](来源:PPT 第10页图表)
3.3 大模型生成答案
DeepSeek-V3 基于上述上下文生成回答,并可能:
-
自动标注引用来源(如“根据您的PDF第3页…”)。
-
拒绝回答无关问题(如“该文件未提及相关内容”)。
4. 与传统 RAG 的对比
环节 | 传统 RAG | DeepSeek 优化 |
---|---|---|
向量存储 | 必须预存向量数据库 | 动态计算,减少存储依赖 |
文件持久化 | 可能长期存储 | 会话级临时处理,隐私友好 |
多模态支持 | 通常仅文本 | 文本+图像联合理解 |
响应速度 | 依赖数据库查询 | 实时处理,适合临时文件 |
5. 总结
DeepSeek Chat 的文件处理逻辑更偏向动态计算,而非严格依赖传统 RAG 的“嵌入+存储+检索”流程。其核心优势在于:
✅ 实时性:临时文件无需预存,即时分析。
✅ 多模态:支持文本、表格、图片的联合理解。
✅ 隐私保护:会话结束后数据自动清理。
未来,随着 LLM 上下文窗口扩大(如 128K+ tokens)和 多模态技术进步,文件处理将更加高效智能。