论文阅读 之 Person Re-identification in the Wild

本文详细研究了行人检测和重识别之间的关系,通过PRW数据集展示了检测器对Re-ID性能的影响。文章介绍了级联微调策略和置信度加权相似度的改进方法,并通过实验对比展示了不同检测器和描述符在PRW上的效果。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

代码链接:Github链接
原文链接:CVPR 链接

1. 文章研究的主要问题

之前的行人重识别工作往往从手工绘制或自动检测到的边界框开始,而且很少分析行人检测任务对行人重识别的影响。本文从三个方面探索了行人检测和行人重识别之间的相互影响:

  1. 分析了各种检测和识别方法的组合对 person re-ID 准确率的影响
  2. 研究了行人检测是否可以帮助提高行人重识别的准确性并概述具体的做法
  3. 研究了能够最大程度提高行人重识别精度的检测器的选择

现有的行人检测和行人重识别数据集缺乏组合评估行人检测和行人重识别任务的注释,因此文章提出了 Person Re-identification in the Wild (PRW) 数据集。

此外,文章还提出了端到端的行人重识别基线和指标。

端到端的行人重识别过程:检测器从原始视频帧中检测行人构成 gallery,选取一个感兴趣的人作为 query,gallery 边界框依照和 query 的相似度进行排序。
在这里插入图片描述

2. P

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值