文章目录
一 MongoDB简介
MongoDB是一个文档型数据库,数据以类似JSON的文档形式存储。
MongoDB的设计理念是为了应对大数据量、高性能和灵活性需求。
MongoDB使用集合(Collections)来组织文档(Documents),每个文档都是由键值对组成的。
- 数据库(Database):存储数据的容器,类似于关系型数据库中的数据库
- 集合(Collection):数据库中的一个集合,类似于关系型数据库中的表
- 文档(Document):集合中的一个数据记录,类似于关系型数据库中的行(row),以BSON格式存储。
MongoDB将数据存储为一个文档,数据结构由键值对组成,文档类似于JSON对象,字段值可以包含其他文档,数组及文档数组。
mysql与MongoDB对比
二 MongoDB操作
1 登录和退出
登录客户端:mongo
退出:exit
2 数据库操作
(1)查看所有数据库
# 方法一
show databases
# 方法二
show dbs
(2)选择数据库
1、选择数据库
use 数据库名
如果数据库不存在,则创建数据库,否则切换到指定数据库。
2、显示当前使用的数据库
db
(3)删除数据库
先选择数据库,再删除
db.dropDatabase()
3 集合操作
(1)创建集合
db.createCollection(集合名)
(2)查看所有集合
查看当前数据库的所有集合
show collections
(3)删除集合
db.集合名.drop()
4 文档操作
(1)新增文档
# 插入一条
db.集合名.insert({key:value})
# 插入多条
db.集合名.insert([{key1:value1}, {key2:value2}])
# 插入一条
db.集合名.insertOne({key:value})
# 插入多条 要是只插入一条会报错
db.集合名.insertMany()
例:
> db.myCollection.insert({name:"zhangsan",age:11})
WriteResult({ "nInserted" : 1 })
> db.myCollection.insert([{name:"wangwu",age:22},{name:"zhaoliu",age:22}])
BulkWriteResult({
"writeErrors" : [ ],
"writeConcernErrors" : [ ],
"nInserted" : 2,
"nUpserted" : 0,
"nMatched" : 0,
"nModified" : 0,
"nRemoved" : 0,
"upserted" : [ ]
})
> db.myCollection.insertOne({name:"z"})
{
"acknowledged" : true,
"insertedId" : ObjectId("6645e331a0ca0d60dfb09af7")
}
> db.myCollection.find({})
{ "_id" : ObjectId("6645b896a0ca0d60dfb09af2"), "name" : "zhangsan", "age" : 11 }
{ "_id" : ObjectId("6645dd92a0ca0d60dfb09af3"), "name" : "lisi", "age" : 12 }
{ "_id" : ObjectId("6645e11fa0ca0d60dfb09af4"), "name" : "wangwu", "age" : 13 }
{ "_id" : ObjectId("6645e14da0ca0d60dfb09af5"), "name" : "wangwu", "age" : 22 }
{ "_id" : ObjectId("6645e14da0ca0d60dfb09af6"), "name" : "zhaoliu", "age" : 22 }
{ "_id" : ObjectId("6645e331a0ca0d60dfb09af7"), "name" : "z" }
{ "_id" : ObjectId("6645e3b0a0ca0d60dfb09af8"), "name" : "a", "age" : 1 }
{ "_id" : ObjectId("6645e3b0a0ca0d60dfb09af9"), "name" : "b" }
> db.myCollection.insertMany({name:"b"})
uncaught exception: TypeError: documents.map is not a function :
DBCollection.prototype.insertMany@src/mongo/shell/crud_api.js:307:17
@(shell):1:1
例:
# 查询a是10的文档
{a:10}
# 查询a是10,b是hello的文档
{a:10, b:"hello"}
# 查询a>10
{a : {$gt : 10}}
# 查询a为10或hello
{a: {$in : [10, "hello"]}}
# a是一个数组,同时包含[10, "hello"]
{a : {$all : [10, "hello"]}}
# a是一个数组,包含元素{b:1, c:2}
{a : {$elemMatch : {b:1, c:2}}}
# a以m开头
{a : /^m/}
{a : {$regex : "^m"}}
# a%10 = 1
{a : {$mod : [10,1]}}
(2)查询文档
# 查询所有
db.集合名.find()
# 按条件查询
db.集合名.find({key:value})
# 按条件查询第一个
db.集合名.findOne({key:value})
# 按条件查询第一个,方式二
db.集合名.find({key:value})[0]
# 查询所有结果的数量
db.stus.find({}).length()
# 方式二
db.stus.find({}).count()
例:
> db.myCollection.find()
{ "_id" : ObjectId("6645b896a0ca0d60dfb09af2"), "name" : "zhangsan", "age" : 11 }
{ "_id" : ObjectId("6645dd92a0ca0d60dfb09af3"), "name" : "lisi", "age" : 12 }
> db.myCollection.find({})
{ "_id" : ObjectId("6645b896a0ca0d60dfb09af2"), "name" : "zhangsan", "age" : 11 }
{ "_id" : ObjectId("6645dd92a0ca0d60dfb09af3"), "name" : "lisi", "age" : 12 }
> db.myCollection.find({name:"lisi"})
{ "_id" : ObjectId("6645dd92a0ca0d60dfb09af3"), "name" : "lisi", "age" : 12 }
> db.myCollection.findOne({name:"lisi"})
{
"_id" : ObjectId("6645dd92a0ca0d60dfb09af3"),
"name" : "lisi",
"age" : 12
}
> db.myCollection.find({name:"lisi"})[0]
{
"_id" : ObjectId("6645dd92a0ca0d60dfb09af3"),
"name" : "lisi",
"age" : 12
}
> db.myCollection.find({}).length()
2
(3)更新文档
# 更新一个
db.collection.update()
# 同时修改多个符合条件的文档
db.collection.updateMany()
# 修改一个符合条件的文档
db.collection.updateOne()
# 替换一个符合条件的文档
db.collection.replaceOne()
首先需要注意的是,在使用update()时,需要一个新的玩意加入,叫做修改操作符,一般长成:
$set 表示需要设置指定的属性
$unset 表示需要删除指定的属性
$push 表示给数组添加一个新元素,因为文档内也会有数组,数组便会有数组元素
$addToset 表示给数组添加一个新元素,和push的区别是,如果出现同名的数组元素,则不会再添加
$gt 大于
$gte 大于等于
$lt 小于
$lte 小于等于
$or [{条件一,条件二}] 表示或的意思,符合条件一或者条件二
$inc 表示自增,用在在原来数据的基础上对数据加减,可用于加薪减薪的操作
(4)删除文档
# 删除所有
db.集合名.remove()
# 按条件删除 所有
db.集合名.remove({key:value})
# 按条件删除 一条
db.集合名.remove({key:value}, true)
# 删除一条
db.collection.deleteOne()
# 删除多条
db.collection.deleteMany()
# 删除集合(如果最后一个集合没了,数据库也没了。。。)
db.collection.drop()
例:
> db.myCollection.remove({name:"wangwu"})
WriteResult({ "nRemoved" : 2 })
三 实例
SQL与MongoDB语句对比
-- 创建表
CREATE TABLE users (name VARCHAR(128), age NUMBER)
db.createCollection("users")
-- 插入
INSERT INTO users VALUES('BOb', 32)
db.users.insert({name:"Bob", age:32})
-- 查询所有字段
SELECT * FROM users
db.users.find()
-- 查询需要的字段
SELECT name, age FROM users
db.users.find({}, {name:1, age:1, _id:0})
-- 查询age=33的用户
SELECT name, age FROM users WHERE age=33
db.users.find({age:33}, {name:1, age:1, _id:0})
-- 查询age>33的用户
SELECT * FROM users WHERE age>33
db.users.find({age, {$gt: 33}})
-- 查询age<=33的用户
SELECT * FROM users WHERE age<=33
db.users.find({age : {$gt:33}})
-- 查询age>33且age<40的用户
SELECT * FROM users WHERE age>33 AND age<40
db.users.find({age:{$gt:33, $lt<40}})
-- 查询age=32且name='Bob'的用户
SELECT * FROM users WHERE age=32 AND name='Bob'
db.users.find({age:32, name:"Bob"})
-- 查询age=33 or name='Bob'的用户
SELECT * FROM users WHERE age=32 OR name='Bob'
db.users.find({$or;[{age:33}, {name:"Bob"}]})
-- 查询age=33的用户,且正序
SELECT * FROM users WHERE age=33 ORDER BY name ASC
db.users.find({age:33}).sort({name:1})
-- 倒序
SELECT * FROM users ORDER BY name DESC
db.users.find().sort({name:-1})
-- 模糊查询
SELECT * FROM users WHERE name LIKE '%Joe%'
dn.users.find({name: /Joe/})
-- 以什么开头
SELECT * FROM users WHERE name LIKE 'Joe%'
db.users.find({name: /^Joe/})
-- limit
SELECT * FROM users LIMIT 10 SKIP 20
db.users.find().skip(20).limit(10)
-- LIMIT 1
SELECT * FROM users LIMIT 1
db.users.findOne()
-- 去重
SELECT DISTINCT name FROM users
db.users.distinct("name")
-- count
SELECT COUNT(*) FROM users
db.users.count()
--
SELECT COUNT(*) FROM users WHERE age>30
db.users.find({age:{$gt:30}}).count()
参考
https://blog.csdn.net/lyyrhf/article/details/115469161
https://blog.csdn.net/weixin_45715650/article/details/120155319