模型评估与选择

来源于 西瓜书-周志华

经验误差与过拟合

  1. 错 误 率 : 分 类 错 误 的 样 本 数 占 总 样 本 数 的 比 例 , E = a m , 即 在 m 个 样 错误率:分类错误的样本数占总样本数的比例,E=\frac{a}{m},即在m个样 E=mam 本 中 有 a 个 样 本 分 类 错 误 本中有a个样本分类错误 a
  2. 精 度 = 1 − 错 误 率 精度=1-错误率 =1
  3. 误 差 : 学 习 器 的 实 际 输 出 与 真 实 输 出 之 间 的 差 异 , 学 习 器 在 训 练 样 本 误差:学习器的实际输出与真实输出之间的差异,学习器在训练样本 上 的 误 差 叫 训 练 误 差 或 者 经 验 误 差 , 在 新 样 本 上 的 误 差 叫 泛 化 误 差 上的误差叫训练误差或者经验误差,在新样本上的误差叫泛化误差
  4. 泛 化 : 模 型 对 新 样 本 的 适 应 能 力 泛化:模型对新样本的适应能力 :
  5. 过 拟 合 : 学 习 器 对 训 练 样 本 进 行 了 过 度 学 习 , 产 生 一 个 经 验 误 差 很 小 的 模 型 , 过拟合:学习器对训练样本进行了过度学习,产生一个经验误差很小的模型, : 该 模 型 对 新 样 本 的 泛 化 能 力 却 很 弱 该模型对新样本的泛化能力却很弱
  6. 欠 拟 合 : 学 习 器 对 训 练 样 本 未 进 行 过 充 分 学 习 , 生 成 一 个 经 验 的 误 差 很 大 的 模 型 , 该 欠拟合:学习器对训练样本未进行过充分学习,生成一个经验的误差很大的模型,该 模 型 f f 新 样 本 的 泛 化 能 力 却 很 弱 模型ff新样本的泛化能力却很弱 ff
    7. 归 一 化 : 将 不 同 的 数 据 范 围 统 一 规 划 在 一 个 范 围 内 的 操 作 归一化:将不同的数据范围统一规划在一个范围内的操作

评估方法

针 对 训 练 数 据 训 练 出 的 不 同 模 型 , 我 们 往 往 根 据 模 型 的 泛 化 能 力 对 模 型 进 行 选 择 针对训练数据训练出的不同模型,我们往往根据模型的泛化能力对模型进行选择
7. 留 出 法 : 直 接 将 数 据 集 D 划 分 为 两 个 互 斥 的 集 合 , 其 中 一 个 集 合 作 为 训 练 集 S , 另 留出法: 直接将数据集D划分为两个互斥的集合,其中一个集合作为训练集S,另 :DS 一 个 作 为 测 试 集 T , 即 D = S ∪ T , S ∩ T = 空 集 , 在 S 上 训 练 出 模 型 后 , 用 一个作为测试集T,即D=S\cup T, S\cap T=空集,在S上训练出模型后,用 TD=ST,ST=S
T 来 评 估 其 测 试 误 差 , 作 为 对 泛 化 误 差 的 估 计 , 为 了 避 免 因 数 据 划 分 过 程 T来评估其测试误差,作为对泛化误差的估计, 为了避免因数据划分过程 T
引 入 额 外 的 偏 差 而 对 最 终 结 果 产 生 影 响 , 采 用 “ 分 层 采 样 ” ( 样 本 中 正 反 样 例 引入额外的偏差而对最终结果产生影响,采用“分层采样”(样本中正反样例 (
个 数 相 同 ) , 做 法 : 将 样 本 中 2 3 ∼ 3 4 用 作 训 练 集 , 个数相同),做法:将样本中\frac{2}{3}\sim\frac{3}{4}用作训练集, )3243 剩 下 用 作 测 试 集 , 使 用 留 出 法 时 , 一 般 要 采 用 若 干 次 随 机 划 分 、 重 复 进 行 剩下用作测试集,使用留出法时,一般要采用若干次随机划分、重复进行 使 实 验 评 估 后 取 平 均 值 作 为 实验评估后取平均值作为 留 出 法 的 评 估 结 果 . 例 如 进 行 100 次 随 机 划 分 , 每 次 产 生 一 个 训 练 / 测 试 集 用 留出法的评估结果.例如进行100次随机划分,每次产生一个训练/测试集用 .100/
8. k 折 交 叉 验 证 : 先 将 数 据 集 D ( D 通 过 分 层 抽 样 获 取 ) 划 分 为 k 个 大 小 相 似 的 互 斥 子 集 , 即 D 1 ∪ D 2 ∪ … ∪ D k ; D i ∩ j = 空 集 , 每 次 用 k − 1 个 子 集 用 作 训 练 集 , 剩 下 k折交叉验证:先将数据集D(D通过分层抽样获取)划分为k个大小相似的互斥子集,即D_1\cup D_2\cup…\cup D_k;D_i \cap_j=空集,每次用k-1个子集用作训练集,剩下 k:D(D)kD1D2Dk;Dij=k1 的 用 作 测 试 集 , k 最 常 用 的 取 值 是 10 , 此 时 称 为 10 折 交 义 验 证 的用作测试集,k最常用的取值是10,此时称为10折交义验证 k1010
在这里插入图片描述

  1. 自 助 法 : 给 定 包 含 m 个 样 本 的 数 据 集 D , 我 们 对 它 进 行 采 样 产 生 数 据 集 D ′ : 每 次 随 机 从 自助法:给定包含m个样本的数据集D,我们对它进行采样产生数据集D':每次随机从 mDD:
    D 中 挑 选 一 个 样 本 , 将 其 拷 贝 放 入 D ′ , 然 后 再 将 该 样 本 放 回 初 始 数 据 集 D 中 , D中挑选一个样本,将其拷贝放入D',然后再将该样本放回初始数据集D中, DDD
    使 得 该 样 本 在 下 次 采 样 时 仍 有 可 能 被 采 到 ; 这 个 过 程 重 复 执 行 m 次 后 , 我 们 就 得 到 了 包 含 。 使得该样本在下次采样时仍有可能被采到;这个过程重复执行m次后,我们就得到了包含。 使;m
    个 样 本 的 数 据 集 D ′ , 这 就 是 自 助 采 样 的 结 果 . 显 然 , D 中 有 一 部 分 样 本 会 在 D ′ 中 多 次 出 个样本的数据集D',这就是自助采样的结果.显然,D中有一部分样本会在D'中多次出 D.DD
    现 , 而 另 一 部 分 样 本 不 出 现 . 可 以 做 一 个 简 单 的 估 计 , 样 本 在 m 次 采 样 中 始 终 不 被 采 到 的 现,而另一部分样本不出现.可以做一个简单的估计,样本在m次采样中始终不被采到的 .m
    概 率 是 ( 1 − 1 m ) m , 取 极 限 得 到 概率是(1-\frac{1}{m})^m,取极限得到 (1m1)m
    lim ⁡ m → + ∞ ( 1 − 1 m ) m = 1 e ≈ 0.368 \lim\limits_{m\rightarrow +\infty}(1-\frac{1}{m})^m=\frac{1}{e}\approx0.368 m+lim(1m1)m=e10.368
    即 通 过 自 助 采 样 , 初 始 数 据 集 D 中 约 有 36.8 % 的 样 本 未 出 现 在 采 样 数 据 集 D ′ 中 。 即通过自助采样,初始数据集D中约有36.8\%的样本未出现在采样数据集D'中。 D36.8%D
    于 是 我 们 可 将 D ′ 用 作 训 练 集 , D ∖ D ′ 用 作 测 试 集 ; 这 样 , 于是我们可将D'用作训练集,D\setminus D'用作测试集;这样, DDD;
    实 际 评 估 的 模 型 与 期 望 评 估 的 实际评估的模型与期望评估的
    模 型 都 使 用 m 个 训 练 样 本 , 而 我 们 仍 有 数 据 总 量 约 1 / 3 的 、 没 在 训 练 集 中 出 现 的 样 本 用 于 模型都使用m个训练样本,而我们仍有数据总量约1/3的、没在训练集中出现的样本用于 使m1/3
    测 试 . 这 样 的 测 试 结 果 , 亦 称 “ 包 外 估 计 ” 测试.这样的测试结果,亦称“包外估计” .

性能度量

衡 量 模 型 泛 化 能 力 的 评 价 标 准 , 这 就 是 性 能 度 量 , 性 能 度 量 反 映 了 任 务 需 求 衡量模型泛化能力的评价标准,这就是性能度量,性能度量反映了任务需求
10. 线 性 回 归 性 的 能 度 量 线性回归性的能度量 线
在 预 测 任 务 中 , 给 定 样 例 集 D = { ( x 1 , y 1 ) , ( x 1 , y 1 ) , . . . . , ( x m , y m ) } 在预测任务中,给定样例集D=\left \{(x_1,y_1),(x_1,y_1),....,(x_m,y_m)\right \} D={(x1,y1),(x1,y1),....,(xm,ym)}
E ( f ; D ) = 1 m ∑ i = 1 m ( f ( x i ) − y i ) 2 E(f;D)=\frac{1}{m}\sum\limits_{i=1}^{m}(f(x_i)-y_i)^2 E(f;D)=m1i=1m(f(xi)yi)2
f ( x i ) 为 学 习 器 f 根 据 模 型 预 测 样 本 i 的 结 果 , y i 为 样 本 i 的 真 实 结 果 f(x_i)为学习器f根据模型预测样本i的结果,y_i为样本i的真实结果 f(xi)fiyii
E ( f ; D ) 实 质 是 反 应 了 学 习 器 预 测 样 本 的 结 果 与 真 实 结 果 之 间 偏 离 程 f f E(f;D)实质是反应了学习器预测样本的结果与真实结果之间偏离程ff E(f;D)ff
更 一 般 的 , 对 于 数 据 分 布 D , 和 概 率 密 度 函 数 p ( ⋅ ) 均 方 误 差 可 描 述 为 更一般的,对于数据分布D,和概率密度函数p(\cdot)均方误差可描述为 Dp()
E ( f ; D ) = ∫ x ∼ D ( f ( x ) − y ) 2 p ( x ) d x E(f;D)=\int_{x\sim D}(f(x)-y)^2p(x)dx E(f;D)=xD(f(x)y)2p(x)dx

  1. 分 类 任 务 的 性 能 度 量 分类任务的性能度量

错 误 率 E ( f ; D ) = 1 m ∑ i = 1 m I ( f ( x i ) ≠ y i ) 错误率E(f;D)=\frac{1}{m}\sum\limits_{i=1}^{m}\mathbb{I}(f(x_i)\neq y_i) E(f;D)=m1i=1mI(f(xi)=yi)
精 度 a c c ( f ; D ) = 1 m ∑ i = 1 m I ( f ( x i ) = y i ) = 1 − E ( f ; D ) 精度acc(f;D)=\frac{1}{m}\sum\limits_{i=1}^{m}\mathbb{I}(f(x_i)=y_i)=1-E(f;D) acc(f;D)=m1i=1mI(f(xi)=yi)=1E(f;D)
更 一 般 的 , 对 于 数 据 分 布 D , 和 概 率 密 度 函 数 p ( ⋅ ) 错 误 率 与 精 度 可 描 述 为 更一般的,对于数据分布D,和概率密度函数p(\cdot)错误率与精度可描述为 Dp()
E ( f ; D ) = ∫ x ∼ D I ( f ( x ) ≠ y ) p ( x ) d x E(f;D)=\int_{x\sim D}\mathbb{I}(f(x)\neq y)p(x)dx E(f;D)=xDI(f(x)=y)p(x)dx
a c c ( f ; D ) = ∫ x ∼ D I ( f ( x ) = y ) p ( x ) d x acc(f;D)=\int_{x\sim D}\mathbb{I}(f(x) =y)p(x)dx acc(f;D)=xDI(f(x)=y)p(x)dx

  1. 查 准 率 与 查 全 率 查准率与查全率
    在这里插入图片描述
    查 准 率 和 查 全 率 是 一 对 矛 盾 的 度 量 . 一 般 来 说 , 查 准 率 高 时 , 查 全 率 往 往 偏 低 ; 而 查 全 率 高 时 , 查 准 率 往 往 偏 低 。 在 很 多 情 形 下 , 我 们 可 根 据 学 习 器 的 预 测 结 果 对 样 例 进 行 排 序 , 排 在 前 面 的 是 学 习 器 认 为 “ 最 可 能 ” 是 正 例 的 样 本 , 排 在 最 后 的 则 是 学 习 器 认 为 “ 最 不 可 能 ” 是 正 例 的 样 本 。 查准率和查全率是一对矛盾的度量.一般来说,查准率高时,查全率往往偏低;而查全率高时,查准率往往偏低。 在很多情形下,我们可根据学习器的预测结果对样例进行排序,排在前面的是学习器认为“最可能”是正例的样本,排在最后的则是学习器认为“最 不可能”是正例的样本。 .;
    按 此 顺 序 逐 个 把 样 本 作 为 正 例 进 行 预 测 , 则 每 次 可 以 计 算 出 当 前 的 查 全 率 、 查 准 率 . 以 查 准 率 为 纵 轴 、 查 全 率 为 横 轴 作 图 。 就 得 到 了 查 准 率 一 查 全 率 曲 线 , 简 称 “ P − R 曲 线 ” , 如 下 图 按此顺序逐个把样本作为正例进行预测,则每次可以计算出当前的查全率、查准率.以查准率为纵轴、查全率为横轴作图。就得到了查准率一查全率曲线,简称“P-R曲线”,如下图 .线PR线
    在这里插入图片描述
    比 较 上 述 几 个 学 习 器 性 能 的 方 法 : 比较上述几个学习器性能的方法:
    1. 比 较 曲 线 下 的 面 积 ( 不 容 易 ) 1.比较曲线下的面积(不容易) 1.线()
    2. 比 较 “ 平 衡 点 ” ( 查 全 率 = 查 准 率 ) 2.比较“平衡点”(查全率=查准率) 2.(=)
    3. F 1 度 量 : 3.F_1度量: 3.F1:
    F 1 = 2 ∗ P ∗ R P + R = 2 ∗ T P 样 例 总 数 + T P − T N F_1=\frac{2*P*R}{P+R}=\frac{2*TP}{样例总数+TP-TN} F1=P+R2PR=+TPTN2TP
    优 化 版 : 优化版:
    F 1 = ( 1 + β 2 ) ∗ P ∗ R ( β 2 ∗ P ) + R F_1=\frac{(1+\beta^2)*P*R}{(\beta ^2*P)+R} F1=(β2P)+R(1+β2)PR
    其 中 β > 0 度 量 了 查 全 率 对 查 准 率 的 相 对 重 要 性 其中\beta>0度量了查全率对查准率的相对重要性 β>0
    β = 1 时 退 化 为 标 准 的 F 1 ; \beta=1时退化为标准的F_1; β=1退F1;
    β > 1 时 查 全 率 有 更 大 影 响 ; β < 1 时 查 准 率 有 更 大 影 响 。 \beta >1时查全率有更大影响;\beta <1时查准率有更大影响。 β>1;β<1

13. R O C 与 A U C ROC与AUC ROCAUC
R O C 是 根 据 任 务 需 求 的 不 同 , 任 务 需 求 对 查 全 率 和 查 准 率 的 偏 重 , 进 行 对 预 测 后 ROC是根据任务需求的不同,任务需求对查全率和查准率的偏重,进行对预测后 ROC
的 结 果 采 用 不 同 的 截 断 点 进 行 排 序 ( 查 准 率 选 取 排 序 靠 前 的 位 置 进 行 截 断 ) , 的结果采用不同的截断点进行排序(查准率选取排序靠前的位置进行截断), ()
R O C 曲 线 能 够 反 映 出 学 习 器 泛 化 性 能 的 好 坏 ROC曲线能够反映出学习器泛化性能的好坏 ROC线

R O C 全 称 是 “ 受 试 者 工 作 特 征 ” , R O C 曲 线 的 纵 轴 是 “ 真 正 例 率 ” , 横 轴 是 “ 假 正 例 率 ” ROC全称是“受试者工作特征”,ROC曲线的纵轴是“真正例率”,横轴是“假正例率” ROCROC线
T P R = T P T P + F N TPR=\frac{TP}{TP+FN} TPR=TP+FNTP
F P R = F P F P + T N FPR=\frac{FP}{FP+TN} FPR=FP+TNFP
在这里插入图片描述

A U C = 1 2 ∑ i = 1 m − 1 ( x i + 1 − x i ) ( y i + y i + 1 ) ( 梯 形 面 积 计 算 公 式 ) AUC=\frac{1}{2}\sum\limits_{i=1}^{m-1}(x_{i+1}-x_i)(y_i+y_{i+1})(梯形面积计算公式) AUC=21i=1m1(xi+1xi)(yi+yi+1)()
ι r a n k = 1 m + + m − ∑ x + ϵ D + ∑ x − ϵ D − ( I ( f ( x + ) < f ( x − ) ) + 1 2 I ( f ( x + ) = f ( x − ) ) ) \iota _{rank}=\frac{1}{m^++m^-}\sum\limits_{x^+\epsilon D^+}\sum\limits_{x^-\epsilon D^-}(\mathbb{I}(f(x^+)<f(x^-))+\frac{1}{2}\mathbb{I}(f(x^+)=f(x^-))) ιrank=m++m1x+ϵD+xϵD(I(f(x+)<f(x))+21I(f(x+)=f(x)))
= 1 − A U C =1-AUC =1AUC

14. 代 价 敏 感 错 误 率 与 代 价 曲 线 代价敏感错误率与代价曲线 线
代 价 : 产 生 一 次 预 测 结 果 所 要 付 出 的 代 价 , 实 质 是 预 测 结 果 与 期 望 值 之 间 的 偏 离 程 f f 代价:产生一次预测结果所要付出的代价,实质是预测结果与期望值之间的偏离程ff ff

比较检验

学 习 器 的 好 坏 ( 泛 化 性 能 的 比 较 ) 是 建 立 在 统 计 学 的 基 础 上 学习器的好坏(泛化性能的比较)是建立在统计学的基础上 ()

假设检验

偏差与方差

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值