参数估计与求法

样本矩与总体矩

X i 样 本 矩 X_{i}样本矩 Xi 依 概 率 收 敛 依概率收敛 X 总 体 矩 X总体矩 X
一 阶 矩 一阶矩 1 n ∑ i = 1 n X i \frac{1}{n}\sum\limits_{i=1}^{n}X_i n1i=1nXi → P \overset{P}{\rightarrow} P E ( X ) E(X) E(X)
二 阶 矩 二阶矩 1 n ∑ i = 1 n X i 2 \frac{1}{n}\sum\limits_{i=1}^{n}X_i^2 n1i=1nXi2 → P \overset{P}{\rightarrow} P E ( X 2 ) E(X^2) E(X2)
二 阶 中 心 矩 二阶中心矩 1 n ∑ i = 1 n ( X i − X ˉ ) 2 \frac{1}{n}\sum\limits_{i=1}^{n}(X_i-\bar{X})^2 n1i=1n(XiXˉ)2 → P \overset{P}{\rightarrow} P D ( X ) D(X) D(X)

点估计

点估计

用 样 本 X 1 , X 2 , X 3 , . . . . . , X n 构 造 的 统 计 量 θ ^ ( X 1 , X 2 , X 3 , . . . . . , X n ) , 用样本X_1,X_2,X_3,.....,X_n构造的统计量\hat{\theta}(X_1,X_2,X_3,.....,X_n), X1,X2,X3,.....,Xnθ^(X1,X2,X3,.....,Xn) 来 估 计 未 知 参 数 θ , 称 为 点 估 计 , 统 计 量 θ ^ ( X 1 , X 2 , X 3 , . . . . . , X n ) 称 为 估 计 量 来估计未知参数\theta,称为点估计,统计量\hat{\theta}(X_1,X_2,X_3,.....,X_n)称为估计量 θθ^(X1,X2,X3,.....,Xn)

无偏估计量

设 θ ^ 为 θ 的 估 计 量 , 如 果 E ( θ ^ ) = θ , 则 称 θ ^ ( X 1 , X 2 , X 3 , . . . . . , X n ) 是 未 知 参 数 θ 设\hat{\theta}为\theta的估计量,如果E(\hat{\theta})=\theta,则称\hat{\theta}(X_1,X_2,X_3,.....,X_n)是未知参数\theta θ^θE(θ^)=θθ^(X1,X2,X3,.....,Xn)θ 的 无 偏 估 计 量 的无偏估计量

更有效估计量

θ 1 ^ , θ 2 ^ 是 未 知 参 数 θ \hat{\theta_1},\hat{\theta_2}是未知参数\theta θ1^,θ2^θ 的 无 偏 估 计 量 , 且 D ( θ 1 ^ ) < D ( θ 2 ^ ) , 则 θ 1 ^ 比 θ 2 ^ 更 有 效 的无偏估计量,且D(\hat{\theta_1})<D(\hat{\theta_2}),则\hat{\theta_1}比\hat{\theta_2}更有效 D(θ1^)<D(θ2^)θ1^θ2^

一致估计量

θ ^ ( X 1 , X 2 , X 3 , . . . . . , X n ) 是 θ 的 估 计 量 , 如 果 θ ^ 依 概 率 收 敛 于 θ , 则 称 \hat{\theta}(X_1,X_2,X_3,.....,X_n)是\theta的估计量,如果\hat{\theta}依概率收敛于\theta,则称 θ^(X1,X2,X3,.....,Xn)θθ^θ θ ^ ( X 1 , X 2 , X 3 , . . . . . , X n ) 是 θ 的 一 致 估 计 量 \hat{\theta}(X_1,X_2,X_3,.....,X_n)是\theta的一致估计量 θ^(X1,X2,X3,.....,Xn)θ

矩估计

矩 估 计 法 : 用 样 本 矩 估 计 总 体 矩 , 用 样 本 矩 的 函 数 估 计 总 体 矩 矩估计法:用样本矩估计总体矩,用样本矩的函数估计总体矩 的 函 数 , 求 出 要 估 计 的 参 数 , 例 如 下 面 的 用 一 阶 矩 来 建 立 的 估 计 函 数 的函数,求出要估计的参数,例如下面的用一阶矩来建立的估计函数
E ( X ; θ ) = x ‾ , x 为 部 分 样 本 值 E(X;\theta)=\overline{x},x为部分样本值 E(X;θ)=xx

最大似然估计

样 本 取 到 观 测 值 的 概 率 , 即 通 过 抽 取 的 部 分 样 本 值 x 1 , x 2 , x 3 , . . . . , x n , 使 得 样本取到观测值的概率,即通过抽取的部分样本值x_1,x_2,x_3,....,x_n,使得 x1,x2,x3,....,xn使
似 然 函 数 L ( x 1 , x 2 , x 3 , . . . . , x n ; θ ) 达 到 似然函数L(x_1,x_2,x_3,....,x_n;\theta)达到 L(x1,x2,x3,....,xn;θ) 最 大 的 参 数 值 θ ^ = θ ^ ( x 1 , x 2 , x 3 , . . . . , x n ) 最大的参数值\hat{\theta}=\hat{\theta}(x_1,x_2,x_3,....,x_n) θ^=θ^(x1,x2,x3,....,xn)
称 为 未 知 参 数 θ 的 最 大 似 然 函 数 称为未知参数\theta的最大似然函数 θ

L ( θ ) = { L ( x 1 , x 2 , x 3 , . . . . , x n ; θ ) = ∏ i = 1 n P ( x i ; θ ) L ( X 1 ϵ U ( x 1 ) , X 2 ϵ U ( x 2 ) , X 3 ϵ U ( x 3 ) , . . . . , X n ϵ U ( x n ) ) = ∏ i = 1 n f ( x i ; θ ) L(\theta)=\left\{\begin{matrix} L(x_1,x_2,x_3,....,x_n;\theta)=\prod \limits_{i=1}^nP(x_i;\theta) \\ L(X_1\epsilon U(x_1),X_2\epsilon U(x_2),X_3\epsilon U(x_3),....,X_n\epsilon U(x_n))=\prod \limits_{i=1}^nf(x_i;\theta) \end{matrix}\right. L(θ)=L(x1,x2,x3,....,xn;θ)=i=1nP(xi;θ)L(X1ϵU(x1),X2ϵU(x2),X3ϵU(x3),....,XnϵU(xn))=i=1nf(xi;θ)

求 解 步 骤 : 求解步骤: :

  1. 构 建 含 未 知 参 数 θ 的 似 然 函 数 L ( θ ) 构建含未知参数\theta的似然函数L(\theta) θL(θ)
  2. 对 L ( θ ) 取 对 数 对L(\theta)取对数 L(θ)
  3. 对 L ( θ ) 求 导 , 令 导 数 为 0 , 救 出 参 数 θ 对L(\theta)求导,令导数为0,救出参数\theta L(θ)0θ

区间估计

  1. 设 θ 是 总 体 X 的 未 知 参 数 , X 1 , X 2 , X 3 , . . . . . , X n , 是 来 自 总 体 X 的 样 本 设\theta是总体X的未知参数,X_1,X_2,X_3,.....,X_n,是来自总体X的样本 θXX1,X2,X3,.....,XnX , 对 于 给 定 的 α ( 0 < α < 1 ) , 如 果 两 个 统 计 量 满 足 ,对于给定的\alpha(0<\alpha <1),如果两个统计量满足 α(0<α<1) P { θ 1 < θ < θ 2 } = 1 − α P\left \{ \theta_1<\theta<\theta_2 \right \}=1-\alpha P{θ1<θ<θ2}=1α
    则 称 随 机 区 间 ( θ 1 , θ 2 ) 为 参 数 θ 的 置 信 水 平 为 1 − α 的 置 信 区 间 , θ 1 则称随机区间(\theta_1,\theta_2)为参数\theta的置信水平为1-\alpha的置信区间,\theta_1 (θ1,θ2)θ1αθ1 为 置 信 下 限 , θ 2 为 置 信 上 限 为置信下限,\theta_2为置信上限 ,θ2
  2. 一 个 正 态 总 体 参 数 的 区 间 估 计 一个正态总体参数的区间估计
    设 总 体 X 设总体X X~ N ( μ , σ 2 ) , X 1 , X 2 , X 3 , . . . . . , X n , 是 来 自 总 体 X 的 样 本 , X ‾ 是 样 本 均 值 N(\mu,\sigma^2),X_1,X_2,X_3,.....,X_n,是来自总体X的样本,\overline{X}是样本均值 N(μ,σ2)X1,X2,X3,.....,XnXX , S 2 是 样 本 方 差 , 下 列 列 出 了 μ 和 σ 的 1 − α 的 置 信 区 间 ,S^2是样本方差,下列列出了\mu和\sigma的1-\alpha的置信区间 S2μσ1α
参 数 参数 参 数 参数 1 − α 的 置 信 区 间 1-\alpha的置信区间 1α
μ 未 知 \mu未知 μ σ 已 知 \sigma已知 σ ( X ‾ − U a 2 σ n , X ‾ + U a 2 σ n ) (\overline{X}-U_{\frac{a}{2}}\frac{\sigma}{\sqrt{n}},\overline{X}+U_{\frac{a}{2}}\frac{\sigma}{\sqrt{n}}) (XU2an σ,X+U2an σ)
μ 未 知 \mu未知 μ σ 未 知 \sigma未知 σ ( X ‾ − t a 2 ( n − 1 ) S n , X ‾ + t a 2 ( n − 1 ) S n ) (\overline{X}-t_{\frac{a}{2}}(n-1)\frac{S}{\sqrt{n}},\overline{X}+t_{\frac{a}{2}}(n-1)\frac{S}{\sqrt{n}}) (Xt2a(n1)n S,X+t2a(n1)n S)
σ 未 知 \sigma未知 σ ( ( n − 1 ) S 2 χ a 2 2 ( n − 1 ) , ( n − 1 ) S 2 χ 1 − a 2 2 ( n − 1 ) ) (\frac{(n-1)S^2}{\chi ^2_{\frac{a}{2}}(n-1)},\frac{(n-1)S^2}{\chi ^2_{1-\frac{a}{2}}(n-1)}) (χ2a2(n1)(n1)S2,χ12a2(n1)(n1)S2)
σ 未 知 \sigma未知 σ ( ∑ i = 1 n ( x i − μ ) 2 χ a 2 2 ( n ) , ∑ i = 1 n ( x i − μ ) 2 χ 1 − a 2 2 ( n ) ) (\frac{\sum\limits_{i=1}^{n}(x_i-\mu)^2}{\chi ^2_{\frac{a}{2}}(n)},\frac{\sum\limits_{i=1}^{n}(x_i-\mu)^2}{\chi ^2_{1-\frac{a}{2}}(n)}) (χ2a2(n)i=1n(xiμ)2,χ12a2(n)i=1n(xiμ)2)
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值