随机变量的数字特征

数学期望

期 望 的 实 质 是 随 机 变 量 X 随 依 概 率 P 收 敛 于 X 的 平 均 值 ( 不 等 同 于 X ‾ ) 期望的实质是随机变量X随依概率P收敛于X的平均值(不等同于\overline{X}) XPX(X)

离散型随机变量X的数学期望

设 随 机 变 量 X 的 概 率 分 布 为 P { X = x k } = p k , k = 1 , 2 , . . . 设随机变量X的概率分布为P\left \{ X=x_k\right \}=p_k,k=1,2,... XP{X=xk}=pkk=1,2,... 如 果 级 数 ∑ k = 1 ∞ x k p k 绝 对 收 敛 , 如果级数\sum_{k=1}^{\infty}x_kp_k绝对收敛, k=1xkpk 则 该 级 数 为 随 机 变 量 X 的 数 学 期 望 或 均 值 , 则该级数为随机变量X的数学期望或均值, X
即 E ( X ) = ∑ k = 1 ∞ x k p k 即E(X)=\sum_{k=1}^{\infty}x_kp_k E(X)=k=1xkpk

连续型随机变量

设 随 机 变 量 X 的 概 率 密 度 为 f ( x ) , 如 果 积 分 ∫ − ∞ + ∞ x f ( x ) d x 绝 对 收 敛 , 设随机变量X的概率密度为f(x),如果积分\int_{-\infty}^{+\infty}xf(x)dx绝对收敛, Xf(x)+xf(x)dx 则 称 该 积 分 为 随 机 变 量 X 的 数 学 期 望 或 均 值 , 则称该积分为随机变量X的数学期望或均值, X 即 E ( X ) = ∫ − ∞ + ∞ x f ( x ) d x 即E(X)=\int_{-\infty}^{+\infty}xf(x)dx E(X)=+xf(x)dx

期望常见的性质

  1. E ( C ) = C E(C)=C E(C)=C
  2. E ( C X ) = C E ( X ) E(CX)=CE(X) E(CX)=CE(X)
  3. E ( X ± Y ) = E ( X ) ± E ( Y ) E(X\pm Y)=E(X)\pm E(Y) E(X±Y)=E(X)±E(Y)
  4. X , Y 独 立 → E ( X Y ) = E ( X ) E ( Y ) X,Y独立\rightarrow E(XY)=E(X)E(Y) X,YE(XY)=E(X)E(Y)

一维随机变量Y=g(x)的数学期望

随 机 变 量 Y = g ( X ) 的 数 学 期 望 为 , 随机变量Y=g(X)的数学期望为, Y=g(X)
离 散 型 : E ( Y ) = E ( g ( X ) ) = ∑ k = 1 ∞ g ( x k ) p k 离散型:E(Y)=E(g(X))=\sum_{k=1}^{\infty}g(x_k)p_k E(Y)=E(g(X))=k=1g(xk)pk
连 续 性 : E ( Y ) = E ( g ( X ) ) = ∫ − ∞ + ∞ g ( x ) f ( x ) d x 连续性:E(Y)=E(g(X))=\int_{-\infty}^{+\infty}g(x)f(x)dx E(Y)=E(g(X))=+g(x)f(x)dx

二维随机变量(X,Y)的函数Z=g(X,Y)的数学期望

随 机 变 量 Z = g ( X , Y ) 的 数 学 期 望 为 , 随机变量Z=g(X,Y)的数学期望为, Z=g(X,Y)
离 散 型 : E ( Z ) = E ( g ( X , Y ) ) = ∑ i = 1 ∞ ∑ j = 1 ∞ g ( x i , y j ) p i j 离散型:E(Z)=E(g(X,Y))=\sum_{i=1}^{\infty}\sum_{j=1}^{\infty}g(x_i,y_j)p_{ij} E(Z)=E(g(X,Y))=i=1j=1g(xi,yj)pij
连 续 性 : E ( Z ) = E ( g ( X , Y ) ) = ∫ − ∞ + ∞ ∫ − ∞ + ∞ g ( x , y ) f ( x , y ) d x d y 连续性:E(Z)=E(g(X,Y))=\int_{-\infty}^{+\infty}\int_{-\infty}^{+\infty}g(x,y)f(x,y)dxdy E(Z)=E(g(X,Y))=++g(x,y)f(x,y)dxdy

随机变量的方差

概 率 论 中 方 差 用 来 度 量 随 机 变 量 和 其 数 学 期 望 ( 即 均 值 ) 之 间 的 偏 离 程 度 概率论中方差用来度量随机变量和其数学期望(即均值)之间的偏离程度 即 即 D ( x ) = E [ x − E ( x ) ] 2 或 者 D ( x ) = E ( x 2 ) − E ( x ) 2 D(x)=E[x-E(x)]^2或者D(x)=E(x^2)-E(x)^2 D(x)=E[xE(x)]2D(x)=E(x2)E(x)2
5. D ( a X + b ) = a 2 D ( x ) D(aX+b)=a^2D(x) D(aX+b)=a2D(x)
6. D ( X ± Y ) = D ( X ) + D ( Y ) ± 2 C O V ( X , Y ) D(X\pm Y)=D(X)+D(Y)\pm 2COV(X,Y) D(X±Y)=D(X)+D(Y)±2COV(X,Y)

常见的数学期望和方差

  1. 0 − 1 分 布 , E ( x ) = p , D ( x ) = 1 − p 0-1分布,E(x)=p,D(x)=1-p 01E(x)=pD(x)=1p
  2. 0 二 项 分 布 , X 0二项分布,X 0X~ B ( n , p ) , E ( x ) = n p , D ( x ) = n p ( 1 − p ) B(n,p),E(x)=np,D(x)=np(1-p) B(n,p)E(x)=npD(x)=np(1p)
  3. 泊 松 分 布 , X 泊松分布,X X~ P ( λ ) , E ( x ) = λ , D ( x ) = λ P(\lambda),E(x)=\lambda,D(x)=\lambda P(λ)E(x)=λD(x)=λ
  4. 几 何 分 布 , p { X = K } = p ( 1 − p ) k − 1 , k = 1 , 2 , . . . . , 几何分布,p\left \{X=K\right \}=p(1-p)^{k-1},k=1,2,...., p{X=K}=p(1p)k1k=1,2,....
    E ( x ) = 1 p , D ( x ) = 1 − p p 2 E(x)=\frac{1}{p},D(x)=\frac{1-p}{p^{2}} E(x)=p1D(x)=p21p
  5. 均 匀 分 布 , X 均匀分布,X X~ U ( a , b ) , E ( x ) = a + b 2 , D ( x ) = ( b − a ) 2 12 U(a,b),E(x)=\frac{a+b}{2},D(x)=\frac{(b-a)^2}{12} U(a,b)E(x)=2a+bD(x)=12(ba)2
  6. 指 数 分 布 , X 指数分布,X X~ E ( λ ) , E ( x ) = 1 λ , D ( x ) = 1 λ 2 E(\lambda),E(x)=\frac{1}{\lambda},D(x)=\frac{1}{\lambda^2} E(λ)E(x)=λ1D(x)=λ21
  7. 正 态 分 布 , X 正态分布,X X~ N ( μ , σ 2 ) , E ( x ) = μ , D ( x ) = σ 2 N(\mu,\sigma^2),E(x)=\mu,D(x)=\sigma^2 N(μ,σ2)E(x)=μD(x)=σ2

协方差

协 方 差 : 表 示 两 个 变 量 总 体 的 误 差 协方差:表示两个变量总体的误差
对 于 随 机 变 量 X , Y , 如 果 E [ X − E ( X ) ] E [ Y − E ( Y ) ] 存 在 , 对于随机变量X,Y,如果E[X-E(X)]E[Y-E(Y)]存在, X,YE[XE(X)]E[YE(Y)] 则 称 之 为 X 和 Y 的 协 方 差 , 记 作 C o v ( X , Y ) , 即 则称之为X和Y的协方差,记作Cov(X,Y),即 XYCov(X,Y)
C o v ( X , Y ) = E [ X − E ( X ) ] E [ Y − E ( Y ) ] = E ( X Y ) − E ( X ) E ( Y ) Cov(X,Y)=E[X-E(X)]E[Y-E(Y)]=E(XY)-E(X)E(Y) Cov(X,Y)=E[XE(X)]E[YE(Y)]=E(XY)E(X)E(Y)

相关系数

ρ x y = C o v ( X , Y ) D ( x ) D ( Y ) , \rho_{xy}=\frac{Cov(X,Y)}{\sqrt{D(x)}\sqrt{D(Y)}}, ρxy=D(x) D(Y) Cov(X,Y) 若 ρ x y = 0 , 则 X , Y 不 相 关 , 即 X , Y 无 线 性 关 系 若\rho_{xy}=0,则X,Y不相关,即X,Y无线性关系 ρxy=0X,YX,Y线

协方差性质

  1. C o v ( X , Y ) = C o v ( Y , X ) Cov(X,Y)=Cov(Y,X) Cov(X,Y)=Cov(Y,X)
  2. C o v ( a X , b Y ) = a b C o v ( X , Y ) Cov(aX,bY)=abCov(X,Y) Cov(aX,bY)=abCov(X,Y)
  3. C o v ( X 1 + X 2 , Y ) = C o v ( X 1 , X ) + C o v ( X 2 , Y ) Cov(X_1+X_2,Y)=Cov(X_1,X)+Cov(X_2,Y) Cov(X1+X2,Y)=Cov(X1,X)+Cov(X2,Y)
  4. ∣ ρ x y ∣ ⩽ 1 |\rho_{xy} |\leqslant 1 ρxy1
  5. ∣ ρ x y ∣ = 1 的 充 要 条 件 是 存 在 常 数 a , b , a ≠ 0 , 使 得 |\rho_{xy} |=1的充要条件是存在常数a,b,a\neq 0,使得 ρxy=1a,ba=0使
    P { Y = a X + b } = 1 P\left \{ Y=aX+b \right \}=1 P{Y=aX+b}=1
  6. 独 立 ⇒ 不 相 关 独立\Rightarrow不相关 , 不 相 关 ⇏ 独 立 ,不相关\nRightarrow独立
  7. 对 于 二 维 正 态 随 机 变 量 ( X , Y ) 来 说 , 对于二维正态随机变量(X,Y)来说, (X,Y)
    当 ρ = 0 , X , Y 独 立 ⇌ X , Y 不 相 关 当\rho=0,X,Y独立\rightleftharpoons X,Y不相关 ρ=0X,YX,Y
  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值